Revisión de la optimización de Bess en sistemas de potencia

Palabras clave: Formulaciones de problemas de optimización, metaheurísticas, optimización convexa, sistemas de almacenamiento por baterías, sistemas de potencia

Resumen

La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y operación de sistemas de potencia, principalmente debido a incertidumbres en los recursos primarios. En la última década, la implementación de sistemas de almacenamiento por baterías en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de la optimización de sistemas de almacenamiento por baterías en sistemas de potencia. Pare ello se procedió, primero, a mostrar el contexto en el cual se implementan los sistemas de baterías, su marco de operación, las tecnologías y las bases de optimización. Luego, fueron detallados la formulación y el marco de optimización de algunos de los problemas de optimización encontrados en literatura reciente. Posteriormente se presentó una revisión de las técnicas de optimización implementadas o propuestas recientemente y una explicación básica de las técnicas más recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo como resultados que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de tendencia para la investigación, en el que se han propuesto diversas formulaciones para el análisis en estado estacionario y transitorio, en problemas multiperiodo que incluyen la estocasticidad y formulaciones multiobjetivo. Adicionalmente, se encontró que el uso de técnicas metaheurísticas es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que la implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo ha permitido el uso de técnicas más eficientes y exactas. La hibridación de técnicas metaheurísticas ha sido un tema relevante para la investigación que ha mostrado mejorías en los resultados en términos de eficiencia y calidad de las soluciones.

Biografía del autor/a

Diego Mendoza Osorio, Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Bogotá -Colombia, dimendozao@unal.edu.co

Referencias bibliográficas

Z. Pooranian, J. Abawajy, V. P, and M. Conti, “Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters,” Energies , vol. 11, no. 6, p. 1348, May 2018, https://doi.org/10.3390/en11061348

Y. Yang, S. Bremner, C. Menictas, and M. Kay, “Battery energy storage system size determination in renewable energy systems: A review,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 109–125, Aug. 2018, https://doi.org/10.1016/j.rser.2018.03.047

P. S. Georgilakis and N. D. Hatziargyriou, “Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3420–3428, Aug. 2013, https://doi.org/10.1109/TPWRS.2012.2237043

C. Parthasarathy, S. Dasgupta, and A. Gupta, “Optimal sizing of energy storage system and their impacts in hybrid microgrid environment,” in 2017 IEEE Transportation Electrification Conference (ITEC-India), Dec. 2017, pp. 1–6. https://doi.org/10.1109/ITEC-India.2017.8333862

L. Wei, T. Nakamura, and K. Imai, “Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system,” Renew Energy, vol. 147, part. 1, pp. 1653–1662, Mar. 2020, https://doi.org/10.1016/j.renene.2019.09.049

O. Gandhi, D. S. Kumar, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration,” Solar Energy, vol. 210, no. February, pp. 181–201, Nov. 2020, https://doi.org/10.1016/j.solener.2020.06.097

M. E. Birk, “Impact of Distributed Energy Resources on Locational Marginal Prices and Electricity Networks,” Massachusetts Institute of Technology, Massachusetts, USA, 2016. [Online]. Available: http://hdl.handle.net/1721.1/104818

M. Azimian, V. Amir, and S. Javadi, “Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment,” Appl Energy, vol. 277, p. 115609, Nov. 2020, https://doi.org/10.1016/j.apenergy.2020.115609

A. Selim, S. Kamel, F. Jurado, and S. Marrouchi, “Developed Algorithm Based on Lightning Search optimizer and Analytical Technique for Allocation of Distribution Generators,” in 2019 21st International Middle East Power Systems Conference (MEPCON), Dec. 2019, pp. 970–975. https://doi.org/10.1109/MEPCON47431.2019.9008011

Z. A. Obaid, L. M. Cipcigan, L. Abrahim, and M. T. Muhssin, “Frequency control of future power systems: reviewing and evaluating challenges and new control methods,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 9–25, Jan. 2019, https://doi.org/10.1007/s40565-018-0441-1

R. Li, W. Wang, Z. Chen, J. Jiang, and W. Zhang, “A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches,” Energies, vol. 10, no. 11, p. 1715, Oct. 2017, https://doi.org/10.3390/en10111715

H. Lan, H. Yin, S. Wen, Y.-Y. Hong, D. C. Yu, and L. Zhang, “Electrical Energy Forecasting and Optimal Allocation of ESS in a Hybrid Wind-Diesel Power System,” Applied Sciences, vol. 7, no. 2, p. 155, Feb. 2017, https://doi.org/10.3390/app7020155

Y. Wang, H. Zhao, and P. Li, “Optimal Offering and Operating Strategies for Wind-Storage System Participating in Spot Electricity Markets with Progressive Stochastic-Robust Hybrid Optimization Model Series,” Math Probl Eng, vol. 2019, pp. 1–19, Jul. 2019, https://doi.org/10.1155/2019/2142050

A. Akbari-Dibavar, K. Zare, and S. Nojavan, “A hybrid stochastic-robust optimization approach for energy storage arbitrage in day-ahead and real-time markets,” Sustain Cities Soc, vol. 49, p. 101600, Aug. 2019, https://doi.org/10.1016/j.scs.2019.101600

W. J. Farmer and A. J. Rix, “Impact of continuous stochastic and spatially distributed perturbations on power system frequency stability,” Electric Power Systems Research, vol. 201, p. 107536, Dec. 2021, https://doi.org/10.1016/j.epsr.2021.107536

O. D. Montoya, W. Gil-González, and L. F. Grisales-Noreña, “Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches,” International Journal of Electrical Power & Energy Systems, vol. 115, p. 105442, Feb. 2020, https://doi.org/10.1016/j.ijepes.2019.105442

M. N. Alam, B. Das, and V. Pant, “Protection scheme for reconfigurable radial distribution networks in presence of distributed generation,” Electric Power Systems Research, vol. 192, p. 106973, Mar. 2021, https://doi.org/10.1016/j.epsr.2020.106973

O. D. Montoya, W. Gil-González, and L. F. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, no. 2, pp. 409–418, Jun. 2020, https://doi.org/10.1016/j.asej.2019.08.011

M.-A. Hamidan and F. Borousan, “Optimal planning of distributed generation and battery energy storage systems simultaneously in distribution networks for loss reduction and reliability improvement,” J Energy Storage, vol. 46, p. 103844, Feb. 2022, https://doi.org/10.1016/j.est.2021.103844

S. Sharma, K. R. Niazi, K. Verma, and T. Rawat, “Coordination of different DGs, BESS and demand response for multi-objective optimization of distribution network with special reference to Indian power sector,” International Journal of Electrical Power & Energy Systems, vol. 121, p. 106074, Oct. 2020, https://doi.org/10.1016/j.ijepes.2020.106074

T. Aziz, N.-A. Masood, S. R. Deeba, W. Tushar, and C. Yuen, “A methodology to prevent cascading contingencies using BESS in a renewable integrated microgrid,” International Journal of Electrical Power & Energy Systems, vol. 110, pp. 737–746, Sep. 2019, https://doi.org/10.1016/j.ijepes.2019.03.068

A. C. Duman, H. S. Erden, Ö. Gönül, and Ö. Güler, “Optimal sizing of PV-BESS units for home energy management system-equipped households considering day-ahead load scheduling for demand response and self-consumption,” Energy Build, vol. 267, p. 112164, Jul. 2022, https://doi.org/10.1016/j.enbuild.2022.112164

A. Kumar et al., “Strategic Allocation and Energy Management of BESS for the Provision of Ancillary Services in Active Distribution Networks,” Energy Procedia, vol. 158, pp. 2972–2978, Feb. 2019, https://doi.org/10.1016/j.egypro.2019.01.963

F. M. Gonzalez-Longatt and S. M. Alhejaj, “Enabling inertial response in utility-scale battery energy storage system,” 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Nov. 2016, pp. 605–610. https://doi.org/10.1109/ISGT-Asia.2016.7796453

Y. Jiao, J. Wu, Q. Tan, Z. Tan, and G. Wang, “An Optimization Model and Modified Harmony Search Algorithm for Microgrid Planning with ESS,” Discrete Dyn Nat Soc, vol. 2017, pp. 1–11, Aug. 2017, https://doi.org/10.1155/2017/8425458

Y.-K. Wu and K.-T. Tang, “Frequency Support by BESS – Review and Analysis,” Energy Procedia, vol. 156, pp. 187–191, Jan. 2019, https://doi.org/10.1016/j.egypro.2018.11.126

A. Zecchino, Z. Yuan, F. Sossan, R. Cherkaoui, and M. Paolone, “Optimal provision of concurrent primary frequency and local voltage control from a BESS considering variable capability curves: Modelling and experimental assessment,” Electric Power Systems Research, vol. 190, p. 106643, Jan. 2021, https://doi.org/10.1016/j.epsr.2020.106643

M. Stecca, L. Ramirez Elizondo, T. Batista Soeiro, P. Bauer, and P. Palensky, “A Comprehensive Review of the Integration of Battery Energy Storage Systems into Distribution Networks,” IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 46–65, Mar. 2020, https://doi.org/10.1109/OJIES.2020.2981832

I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6–7, pp. 1513–1522, Aug. 2009, https://doi.org/10.1016/j.rser.2008.09.028

M. Aneke and M. Wang, “Energy storage technologies and real life applications – A state of the art review,” Appl Energy, vol. 179, pp. 350–377, Oct. 2016, https://doi.org/10.1016/j.apenergy.2016.06.097

G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, “The lithium-ion battery: State of the art and future perspectives,” Renewable and Sustainable Energy Reviews, vol. 89, no. April, pp. 292–308, Jun. 2018, https://doi.org/10.1016/j.rser.2018.03.002

L. Maeyaert, L. Vandevelde, and T. Döring, “Battery Storage for Ancillary Services in Smart Distribution Grids,” J Energy Storage, vol. 30, p. 101524, Aug. 2020, https://doi.org/10.1016/j.est.2020.101524

R. Sakipour and H. Abdi, “Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage,” International Journal of Electrical Power & Energy Systems, vol. 140, p. 108082, Sep. 2022, https://doi.org/10.1016/j.ijepes.2022.108082

L. B. Raju and K. S. Rao, “WITHDRAWN: Control and stability of micro grids during transient states,” Mater Today Proc, Jan. 2021, https://doi.org/10.1016/j.matpr.2020.11.057

H. A. Khalid, N. A. Al-Emadi, L. Ben-Brahim, A. Gastli, and C. Cecati, “A novel model predictive control with an integrated SOC and floating DC-link voltage balancing for 3-phase 7-level PUC converter-based MV BESS,” International Journal of Electrical Power & Energy Systems, vol. 130, p. 106895, Sep. 2021, https://doi.org/10.1016/j.ijepes.2021.106895

R. Babu, V. G. Rao, and S. Rao, “Battery energy integrated active power filter for harmonic compensation and active power injection,” Sustainable Computing: Informatics and Systems, vol. 35, p. 100664, Sep. 2022, https://doi.org/10.1016/j.suscom.2022.100664

S. Fahad, A. Goudarzi, Y. Li, and J. Xiang, “A coordination control strategy for power quality enhancement of an active distribution network,” Energy Reports, vol. 8, pp. 5455–5471, Nov. 2022, https://doi.org/10.1016/j.egyr.2022.04.014

Y. Li, L. Zhang, K. Lai, and X. Zhang, “Dynamic state estimation method for multiple battery energy storage systems with droop-based consensus control,” International Journal of Electrical Power & Energy Systems, vol. 134, p. 107328, Jan. 2022, https://doi.org/10.1016/j.ijepes.2021.107328

N. Bizon, “Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system,” Appl Energy, vol. 229, no. July, pp. 459–473, Nov. 2018, https://doi.org/10.1016/j.apenergy.2018.08.013

A. J. Abianeh and F. Ferdowsi, “Sliding Mode Control Enabled Hybrid Energy Storage System for Islanded DC Microgrids with Pulsing Loads,” Sustain Cities Soc, vol. 73, p. 103117, Oct. 2021, https://doi.org/10.1016/j.scs.2021.103117

R. Li, W. Wang, Z. Chen, and X. Wu, “Optimal planning of energy storage system in active distribution system based on fuzzy multi-objective bi-level optimization,” Journal of Modern Power Systems and Clean Energy, vol. 6, no. 2, pp. 342–355, Mar. 2018, https://doi.org/10.1007/s40565-017-0332-x

S. A. Hosseini, M. Toulabi, A. Ashouri-Zadeh, and A. M. Ranjbar, “Battery energy storage systems and demand response applied to power system frequency control,” International Journal of Electrical Power & Energy Systems, vol. 136, p. 107680, Mar. 2022, https://doi.org/10.1016/j.ijepes.2021.107680

W. Xing, H. Wang, L. Lu, X. Han, K. Sun, and M. Ouyang, “An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids,” Energy, vol. 233, p. 121155, Oct. 2021, https://doi.org/10.1016/j.energy.2021.121155

M. Hajiakbari Fini and M. E. Hamedani Golshan, “Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables,” Electric Power Systems Research, vol. 154, pp. 13–22, Jan. 2018, https://doi.org/10.1016/j.epsr.2017.08.007

J. Liu, D. Yang, W. Yao, R. Fang, H. Zhao, and B. Wang, “PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system,” Protection and Control of Modern Power Systems, vol. 2, no. 1, p. 39, Nov. 2017, https://doi.org/10.1186/s41601-017-0070-0

Y. Zhao et al., “Energy storage for black start services: A review,” International Journal of Minerals, Metallurgy and Materials, vol. 29, no. 4, pp. 691–704, Apr. 2022, https://doi.org/10.1007/s12613-022-2445-0

M. E. Hassanzadeh, M. Nayeripour, S. Hasanvand, and E. Waffenschmidt, “Decentralized control strategy to improve dynamic performance of micro-grid and reduce regional interactions using BESS in the presence of renewable energy resources,” J Energy Storage, vol. 31, p. 101520, Oct. 2020, https://doi.org/10.1016/j.est.2020.101520

S. Bin Wali et al., “Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions,” J Energy Storage, vol. 35, p. 102296, Mar. 2021, https://doi.org/10.1016/j.est.2021.102296

O. B. Adewuyi, R. Shigenobu, K. Ooya, T. Senjyu, and A. M. Howlader, “Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection,” Electric Power Systems Research, vol. 172, pp. 303–312, Jul. 2019, https://doi.org/10.1016/j.epsr.2019.04.004

H. A. Khan, M. Zuhaib, and M. Rihan, “Voltage fluctuation mitigation with coordinated OLTC and energy storage control in high PV penetrating distribution network,” Electric Power Systems Research, vol. 208, p. 107924, Jul. 2022, https://doi.org/10.1016/j.epsr.2022.107924

B. Ahmadi, O. Ceylan, and A. Ozdemir, “Voltage Profile Improving And Peak Shaving Using Multi-type Distributed Generators And Battery Energy Storage Systems In Distribution Networks,” in 2020 55th International Universities Power Engineering Conference (UPEC), Sep. 2020, pp. 1–6. https://doi.org/10.1109/UPEC49904.2020.9209880

S. Zhang, H. Liu, F. Wang, T. Yan, and K. Wang, “Secondary frequency control strategy for BESS considering their degree of participation,” Energy Reports, vol. 6, supp. 9, pp. 594–602, Dec. 2020, https://doi.org/10.1016/j.egyr.2020.11.183

S. K. Gupta, T. Ghose, and K. Chatterjee, “Coordinated control of Incentive-Based Demand Response Program and BESS for frequency regulation in low inertia isolated grid,” Electric Power Systems Research, vol. 209, p. 108037, Aug. 2022, https://doi.org/10.1016/j.epsr.2022.108037

E. Pusceddu, B. Zakeri, and G. Castagneto Gissey, “Synergies between energy arbitrage and fast frequency response for battery energy storage systems,” Appl Energy, vol. 283, p. 116274, Feb. 2021, https://doi.org/10.1016/j.apenergy.2020.116274

M. B. Mustafa, P. Keatley, Y. Huang, O. Agbonaye, O. O. Ademulegun, and N. Hewitt, “Evaluation of a battery energy storage system in hospitals for arbitrage and ancillary services,” J Energy Storage, vol. 43, p. 103183, Nov. 2021, https://doi.org/10.1016/j.est.2021.103183

P. L. C. García-Miguel, A. P. Asensio, J. L. Merino, and M. G. Plaza, “Analysis of cost of use modelling impact on a battery energy storage system providing arbitrage service,” J Energy Storage, vol. 50, p. 104203, Jun. 2022, https://doi.org/10.1016/j.est.2022.104203

R. Zhang, N. Zhou, X. Meng, Y. Chi, Q. Wang, and M. Zhang, “A new starting capability assessment method for induction motors in an industrial islanded microgrid with diesel generators and energy storage systems,” Electric Power Systems Research, vol. 210, p. 108099, Sep. 2022, https://doi.org/10.1016/j.epsr.2022.108099

M. B. Sanjareh, M. H. Nazari, G. B. Gharehpetian, R. Ahmadiahangar, and A. Rosin, “Optimal scheduling of HVACs in islanded residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells,” Sustainable Energy, Grids and Networks, vol. 25, p. 100424, Mar. 2021, https://doi.org/10.1016/j.segan.2020.100424

M. M. Rana, M. F. Romlie, M. F. Abdullah, M. Uddin, and M. R. Sarkar, “A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system,” Energy, vol. 234, p. 121157, Nov. 2021, https://doi.org/10.1016/j.energy.2021.121157

S. Lakshmi and S. Ganguly, “Multi-objective planning for the allocation of PV-BESS integrated open UPQC for peak load shaving of radial distribution networks,” J Energy Storage, vol. 22, pp. 208–218, Apr. 2019, https://doi.org/10.1016/j.est.2019.01.011

E. Diotama, R. Irnawan, L. M. Putranto, and Sarjiya, “ANN for Optimal Operation of BESS in a Grid Integrated Wind Farm,” in 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), Sep. 2020, pp. 96–101. https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249874

N. Vazquez, S. S. Yu, T. K. Chau, T. Fernando, and H. H.-C. Iu, “A Fully Decentralized Adaptive Droop Optimization Strategy for Power Loss Minimization in Microgrids With PV-BESS,” IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 385–395, Mar. 2019, https://doi.org/10.1109/TEC.2018.2878246

J. Hazra, M. Padmanaban, F. Zaini, and L. C. de Silva, “Congestion relief using grid scale batteries,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Feb. 2015, pp. 1–5. https://doi.org/10.1109/ISGT.2015.7131789

D. Ranamuka, K. M. Muttaqi, and D. Sutanto, “Flexible AC Power Flow Control in Distribution Systems by Coordinated Control of Distributed Solar-PV and Battery Energy Storage Units,” IEEE Trans Sustain Energy, vol. 11, no. 4, pp. 2054–2062, Oct. 2020, https://doi.org/10.1109/TSTE.2019.2935479

A. Paladin et al., “Micro market based optimisation framework for decentralised management of distributed flexibility assets,” Renew Energy, vol. 163, pp. 1595–1611, Jan. 2021, https://doi.org/10.1016/j.renene.2020.10.003

H. Mehrjerdi, E. Rakhshani, and A. Iqbal, “Substation expansion deferral by multi-objective battery storage scheduling ensuring minimum cost,” J Energy Storage, vol. 27, p. 101119, Feb. 2020, https://doi.org/10.1016/j.est.2019.101119

M. Mossaddek et al., “Nonlinear modeling of lithium-ion battery,” Mater Today Proc, vol. 66, part. 1, pp. 80–84, 2022, https://doi.org/10.1016/j.matpr.2022.03.302

M. Kamruzzaman, X. Zhang, M. Abdelmalak, D. Shi, and M. Benidris, “A data-driven accurate battery model to use in probabilistic analyses of power systems,” J Energy Storage, vol. 44, part. A, p. 103292, Dec. 2021, https://doi.org/10.1016/j.est.2021.103292

E. M. Krieger and C. B. Arnold, “Effects of undercharge and internal loss on the rate dependence of battery charge storage efficiency,” J Power Sources, vol. 210, pp. 286–291, Jul. 2012, https://doi.org/10.1016/j.jpowsour.2012.03.029

A. Allahham, D. Greenwood, C. Patsios, and P. Taylor, “Adaptive receding horizon control for battery energy storage management with age-and-operation-dependent efficiency and degradation,” Electric Power Systems Research, vol. 209, p. 107936, Aug. 2022, https://doi.org/10.1016/j.epsr.2022.107936

H. Saboori and S. Jadid, “Mobile and self-powered battery energy storage system in distribution networks–Modeling, operation optimization, and comparison with stationary counterpart,” J Energy Storage, vol. 42, p. 103068, Oct. 2021, https://doi.org/10.1016/j.est.2021.103068

S. H. Low, “Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence,” IEEE Trans Control Netw Syst, vol. 1, no. 1, pp. 15–27, Mar. 2014, https://doi.org/10.1109/TCNS.2014.2309732

M. Dorigo, M. Birattari, and T. Stützle, “Metaheuristic,” in Encyclopedia of Machine Learning and Data Mining, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2017, pp. 817–818. https://doi.org/10.1007/978-1-4899-7687-1_537

M. Gendreau and J.-Y. Potvin, “Metaheuristics in Combinatorial Optimization,” Ann Oper Res, vol. 140, no. 1, pp. 189–213, Nov. 2005, https://doi.org/10.1007/s10479-005-3971-7

Y. Zhu, C. Liu, R. Dai, G. Liu, and Y. Xu, “Optimal Battery Energy Storage Placement for Transient Voltage Stability Enhancement,” 2019 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2019, pp. 1–5. https://doi.org/10.1109/PESGM40551.2019.8973610

J. Qi, W. Huang, K. Sun, and W. Kang, “Optimal Placement of Dynamic Var Sources by Using Empirical Controllability Covariance,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 240–249, Jan. 2017, https://doi.org/10.1109/TPWRS.2016.2552481

N. Cifuentes, C. Rahmann, F. Valencia, and R. Alvarez, “Network allocation of BESS with voltage support capability for improving the stability of power systems,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 939–949, Mar. 2019, https://doi.org/10.1049/iet-gtd.2018.6265

I. Martínez Sanz, B. Stojkovska, A. Wilks, J. Horne, A. R. Ahmadi, and T. Ustinova, “Enhancing transmission and distribution system coordination and control in GB using power services from DERs,” The Journal of Engineering, vol. 2019, no. 18, pp. 4911–4915, Jul. 2019, https://doi.org/10.1049/joe.2018.9303

H. Zhu and H. J. Liu, “Fast Local Voltage Control Under Limited Reactive Power: Optimality and Stability Analysis,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3794–3803, Sep. 2016, https://doi.org/10.1109/TPWRS.2015.2504419

T. Zhao, A. Parisio, and J. V. Milanović, “Distributed control of battery energy storage systems in distribution networks for voltage regulation at transmission–distribution network interconnection points,” Control Eng Pract, vol. 119, p. 104988, Feb. 2022, https://doi.org/10.1016/j.conengprac.2021.104988

M. R. Nayak, D. Behura, and K. Kasturi, “Optimal allocation of energy storage system and its benefit analysis for unbalanced distribution network with wind generation,” J Comput Sci, vol. 51, p. 101319, Apr. 2021, https://doi.org/10.1016/j.jocs.2021.101319

C. R. Reddy, B. S. Goud, F. Aymen, G. S. Rao, and E. C. Bortoni, “Power Quality Improvement in HRES Grid Connected System with FOPID Based Atom Search Optimization Technique,” Energies , vol. 14, no. 18, p. 5812, Sep. 2021, https://doi.org/10.3390/en14185812

J. Li, H. You, J. Qi, M. Kong, S. Zhang, and H. Zhang, “Stratified Optimization Strategy Used for Restoration With Photovoltaic-Battery Energy Storage Systems as Black-Start Resources,” IEEE Access, vol. 7, pp. 127339–127352, Aug. 2019, https://doi.org/10.1109/ACCESS.2019.2937833

S. Li, Q. Xu, Y. Xia, and K. Hua, “Comprehensive setting and optimization of Dead-Band for BESS participate in power grid primary frequency regulation,” International Journal of Electrical Power & Energy Systems, vol. 141, p. 108195, Oct. 2022, https://doi.org/10.1016/j.ijepes.2022.108195

K. Wen, W. Li, S. S. Yu, P. Li, and P. Shi, “Optimal intra-day operations of behind-the-meter battery storage for primary frequency regulation provision: A hybrid lookahead method,” Energy, vol. 247, p. 123482, May 2022, https://doi.org/10.1016/j.energy.2022.123482

Y. Li et al., “Optimal battery schedule for grid-connected photovoltaic-battery systems of office buildings based on a dynamic programming algorithm,” J Energy Storage, vol. 50, p. 104557, Jun. 2022, https://doi.org/10.1016/j.est.2022.104557

X. Zhang, Y. Son, and S. Choi, “Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources,” Energies , vol. 15, no. 6, p. 2212, Mar. 2022, https://doi.org/10.3390/en15062212

T. Gu et al., “Placement and capacity selection of battery energy storage system in the distributed generation integrated distribution network based on improved NSGA-II optimization,” J Energy Storage, vol. 52, part. A, p. 104716, Aug. 2022, https://doi.org/10.1016/j.est.2022.104716

R. Tarife, Y. Nakanishi, Y. Chen, Y. Zhou, N. Estoperez, and A. Tahud, “Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines,” Energies , vol. 15, no. 6, p. 2251, Mar. 2022, https://doi.org/10.3390/en15062251

R. A. Thokar, N. Gupta, K. R. Niazi, A. Swarnkar, S. Sharma, and K. Meena, “Optimal Integration and Management of Solar Generation and Battery Storage System in Distribution Systems under Uncertain Environment,” International Journal of Renewable Energy Research, vol. 10, no. 1, pp. 11–12, Mar. 2020, https://doi.org/10.20508/ijrer.v10i1.10130.g7832

Q. Chai, C. Zhang, Z. Dong, and W. Chen, “Optimal Daily Scheduling of Distributed Battery Energy Storage Systems Considering Battery Degradation Cost,” 2021 IEEE Power & Energy Society General Meeting (PESGM), Jul. 2021, pp. 1–5. https://doi.org/10.1109/PESGM46819.2021.9638252

J. Kennedy., “Particle Swarm Optimization,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2011, pp. 760–766. https://doi.org/10.1007/978-0-387-30164-8_630

Z. Yuan, W. Wang, H. Wang, and A. Yildizbasi, “A new methodology for optimal location and sizing of battery energy storage system in distribution networks for loss reduction,” J Energy Storage, vol. 29, p. 101368, Jun. 2020, https://doi.org/10.1016/j.est.2020.101368

S. Mikulski and A. Tomczewski, “Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks,” Energies, vol. 14, no. 21, p. 7304, Nov. 2021, https://doi.org/10.3390/en14217304

P. Boonluk, A. Siritaratiwat, P. Fuangfoo, and S. Khunkitti, “Optimal Siting and Sizing of Battery Energy Storage Systems for Distribution Network of Distribution System Operators,” Batteries, vol. 6, no. 4, p. 56, Nov. 2020, https://doi.org/10.3390/batteries6040056

P. Boonluk, S. Khunkitti, P. Fuangfoo, and A. Siritaratiwat, “Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand,” Energies, vol. 14, no. 5, p. 1458, Mar. 2021, https://doi.org/10.3390/en14051458

V. Janamala and D. Sreenivasulu Reddy, “Coyote optimization algorithm for optimal allocation of interline –Photovoltaic battery storage system in islanded electrical distribution network considering EV load penetration,” J Energy Storage, vol. 41, p. 102981, Sep. 2021, https://doi.org/10.1016/j.est.2021.102981

M. Malik and P. R. Sharma, “Optimal siting and sizing of hybrid PV and wind energy distribution network,” Soft comput, vol. 26, no. 11, pp. 5335–5346, Jun. 2022, https://doi.org/10.1007/s00500-022-06911-5

İ. Çetinbaş, B. Tamyürek, and M. Demirtaş, “Sizing optimization and design of an autonomous AC microgrid for commercial loads using Harris Hawks Optimization algorithm,” Energy Convers Manag, vol. 245, p. 114562, Oct. 2021, https://doi.org/10.1016/j.enconman.2021.114562

M. Talaat, B. E. Sedhom, and A. Y. Hatata, “A new approach for integrating wave energy to the grid by an efficient control system for maximum power based on different optimization techniques,” International Journal of Electrical Power & Energy Systems, vol. 128, p. 106800, Jun. 2021, https://doi.org/10.1016/j.ijepes.2021.106800

R. Sakipour and H. Abdi, “Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms,” Sustainability, vol. 12, no. 24, p. 10257, Dec. 2020, https://doi.org/10.3390/su122410257

J.-W. Lee, M.-K. Kim, and H.-J. Kim, “A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy,” Energies , vol. 14, no. 3, p. 603, Jan. 2021, https://doi.org/10.3390/en14030603

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989. [Online]. Available: https://books.google.com.co/books?id=2IIJAAAACAAJ

K. E. Adetunji, I. W. Hofsajer, A. M. Abu-Mahfouz, and L. Cheng, “Category-Based Multiobjective Approach for Optimal Integration of Distributed Generation and Energy Storage Systems in Distribution Networks,” IEEE Access, vol. 9, pp. 28237–28250, Feb. 2021, https://doi.org/10.1109/ACCESS.2021.3058746

S. Subramanian, C. Sankaralingam, R. M. Elavarasan, R. R. Vijayaraghavan, K. Raju, and L. Mihet-Popa, “An Evaluation on Wind Energy Potential Using Multi-Objective Optimization Based Non-Dominated Sorting Genetic Algorithm III,” Sustainability, vol. 13, no. 1, p. 410, Jan. 2021, https://doi.org/10.3390/su13010410

X. Zhang, Y. Son, T. Cheong, and S. Choi, “Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation,” Energy, vol. 242, p. 123015, Mar. 2022, https://doi.org/10.1016/j.energy.2021.123015

Z. Yuan, W. Wang, H. Wang, and A. Yıldızbaşı, “Allocation and sizing of battery energy storage system for primary frequency control based on bio-inspired methods: A case study,” Int J Hydrogen Energy, vol. 45, no. 38, pp. 19455–19464, Jul. 2020, https://doi.org/10.1016/j.ijhydene.2020.05.013

C. Leone, M. Longo, L. M. Fernandez-Ramirez, and P. Garcia-Trivino, “Multi-Objective Optimization of PV and Energy Storage Systems for Ultra-Fast Charging Stations,” IEEE Access, vol. 10, pp. 14208–14224, Jan. 2022, https://doi.org/10.1109/ACCESS.2022.3147672

Z. Huang, P. Ma, M. Wang, B. Fang, and M. Zhang, “A Hierarchical Strategy for Multi-Objective Optimization of Distribution Network Considering DGs and V2G-Enabled EVs Integration,” Front Energy Res, vol. 10, pp. 1–13, Mar. 2022, https://doi.org/10.3389/fenrg.2022.869844

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, https://doi.org/10.1016/j.advengsoft.2013.12.007

H. Abdel-Mawgoud, A. Fathy, and S. Kamel, “An effective hybrid approach based on arithmetic optimization algorithm and sine cosine algorithm for integrating battery energy storage system into distribution networks,” J Energy Storage, vol. 49, , p. 104154, May 2022, https://doi.org/10.1016/j.est.2022.104154

A. Pal, A. Bhattacharya, and A. K. Chakraborty, “Placement of Public Fast-Charging Station and Solar Distributed Generation with Battery Energy Storage in Distribution Network Considering Uncertainties and Traffic Congestion,” J Energy Storage, vol. 41, p. 102939, Sep. 2021, https://doi.org/10.1016/j.est.2021.102939

R. Muthukumar and P. Balamurugan, “A model predictive controller for improvement in power quality from a hybrid renewable energy system,” Soft comput, vol. 23, no. 8, pp. 2627–2635, Apr. 2019, https://doi.org/10.1007/s00500-018-3626-7

N. Bacanin, “Hybrid multi agent optimization for optimal battery storage using micro grid,” Expert Syst, pp. 1–16, Mar. 2022, https://doi.org/10.1111/exsy.12995

B. Mukhopadhyay and D. Das, “Optimal multi-objective expansion planning of a droop-regulated islanded microgrid,” Energy, vol. 218, p. 119415, Mar. 2021, https://doi.org/10.1016/j.energy.2020.119415

S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, https://doi.org/10.1016/j.advengsoft.2016.01.008

L. A. Wong, V. K. Ramachandaramurthy, S. L. Walker, and J. B. Ekanayake, “Optimal Placement and Sizing of Battery Energy Storage System Considering the Duck Curve Phenomenon,” IEEE Access, vol. 8, pp. 197236–197248, Oct. 2020, https://doi.org/10.1109/ACCESS.2020.3034349

M. Mohammadjafari, R. Ebrahimi, and V. Parvin Darabad, “Optimal Energy Management of a Microgrid Incorporating a Novel Efficient Demand Response and Battery Storage System,” Journal of Electrical Engineering & Technology, vol. 15, no. 2, pp. 571–590, Mar. 2020, https://doi.org/10.1007/s42835-020-00345-5

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, Aug. 2019, https://doi.org/10.1016/j.future.2019.02.028

X.-S. Yang, Nature-inspired metaheuristic algorithms, Second edition, 2nd. Frome, England: Luniver Press, 2010. [Online]. Available: https://staff.fmi.uvt.ro/~daniela.zaharie/ma2016/projects/techniques/FireflyAlgorithm/Yang_nature_book_part.pdf

I. Çetinbaş, B. Tamyürek, and M. Demırtaş, “The Hybrid Harris Hawks Optimizer-Arithmetic Optimization Algorithm: A New Hybrid Algorithm for Sizing Optimization and Design of Microgrids,” IEEE Access, vol. 10, pp. 19254–19283, Feb. 2022, https://doi.org/10.1109/ACCESS.2022.3151119

S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, “Grasshopper optimization algorithm for multi-objective optimization problems,” Applied Intelligence, vol. 48, no. 4, pp. 805–820, Apr. 2018, https://doi.org/10.1007/s10489-017-1019-8

S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. dos S. Coelho, “Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization,” Expert Syst Appl, vol. 47, pp. 106–119, Apr. 2016, https://doi.org/10.1016/j.eswa.2015.10.039

Cómo citar
[1]
D. Mendoza Osorio, «Revisión de la optimización de Bess en sistemas de potencia », TecnoL., vol. 26, n.º 56, p. e2426, dic. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-12-23
Sección
Artículos de investigación
Crossref Cited-by logo