Changes in the bioactive compounds of pasteurized gooseberry (Physalis peruviana L.) juice

Keywords: Carotenoids, vitamin C, exotic fruit, luminosity, chromaticity

Abstract

The worldwide market of fruit drinks is interested in exotic juices with high nutritional value, and part of that demand can be satisfied with gooseberry derivatives. Therefore, the objective of this study was to evaluate the effect of pasteurization on the concentration of vitamin C, carotenoids, and surface color of cape gooseberry juice. Gooseberry fruits in a state 5 of maturity (yellow-orange) were processed in a commercial juice extractor, and the obtained juice was mixed with distilled water in a 1: 1 ratio. Two pasteurization treatments (80 ° C for 15 minutes and 94 ° C for 29 minutes) were evaluated to establish their effects on the response variables (vitamin C, carotenoids, and surface color). The results indicate that the pasteurization treatments did not significantly affect the concentration of vitamin C or the luminosity. Nevertheless, the thermal treatments significantly increased (p<0.05), between 50 and 83 %, the concentration of carotenoids, the values of chromaticity, and the yellowing index of cape gooseberry juice. According to the results, it can be concluded that pasteurization treatments favor the nutritional quality and superficial color of said juice.

 

Author Biographies

Lilian Carcamo-Medina, *, Universidad Nacional de Agricultura, , Honduras

Estudiante de Tecnología Alimentaria, Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Catacamas-Honduras, lcarcamo@unal.edu.co
*Corresponding author

Mildred Eleazar-Turcios, Universidad Nacional de Agricultura, Honduras

MSc en Tecnología de Alimentos, Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Catacamas-Honduras, eleturcios@unag.edu.hn

Luis Eduardo Ordoñez-Santos, Universidad Nacional de Colombia, Colombia

PhD en Ciencias Biológicas, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Palmira-Colombia, leordonezs@unal.edu.co

References

S. Kamiloglu, “Authenticity and traceability in beverages,” Food Chem., vol. 277, pp. 12–24, Mar. 2019. https://doi.org/10.1016/j.foodchem.2018.10.091.

L. E. Ordóñez-Santos, J. Martínez-Girón, and M. E. Arias-Jaramillo, “Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice,” Food Chem., vol. 233, pp. 96–100, Oct. 2017. https://doi.org/10.1016/j.foodchem.2017.04.114.

J. E. Zapata M., G. L. Ciro G., and P. Marulanda L., “Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology,” Agron. Colomb., vol. 34, no. 2, p. 228, May 2016. https://doi.org/10.15446/agron.colomb.v34n2.54920.

K. Bravo and E. Osorio, “Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit,” Food Chem., vol. 197, pp. 185–190, Apr. 2016. https://doi.org/10.1016/j.foodchem.2015.10.126.

M. F. Ramadan, “Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview,” Food Res. Int., vol. 44, no. 7, pp. 1830–1836, Aug. 2011. https://doi.org/10.1016/j.foodres.2010.12.042.

L. Etzbach, A. Pfeiffer, A. Schieber, and F. Weber, “Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree,” LWT, vol. 100, pp. 69–74, Feb. 2019. https://doi.org/10.1016/j.lwt.2018.10.032.

J. Peng, J. Tang, D. M. Barrett, S. S. Sablani, N. Anderson, and J. R. Powers, “Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 14, pp. 2970–2995, Sep. 2017. https://doi.org/10.1080/10408398.2015.1082126.

D. Cautela, D. Castaldo, and B. Laratta, “Thermal inactivation of pectin methylesterase in pineapple juice,” J. Food Meas. Charact., vol. 12, no. 4, pp. 2795–2800, Dec. 2018. https://doi.org/10.1007/s11694-018-9894-1.

E. G. Alves Filho et al., “Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1 H q NMR and GC–MS coupled to chemometrics,” Food Chem., vol. 265, pp. 23–31, Nov. 2018. https://doi.org/10.1016/j.foodchem.2018.05.038.

A. Tchuenchieu et al., “Effect of low thermal pasteurization in combination with carvacrol on color, antioxidant capacity, phenolic and vitamin C contents of fruit juices,” Food Sci. Nutr., vol. 6, no. 4, pp. 736–746, Jun. 2018. https://doi.org/10.1002/fsn3.611.

M. A. Rabie, A. Z. Soliman, Z. S. Diaconeasa, and B. Constantin, “Effect of Pasteurization and Shelf Life on the Physicochemical Properties of Physalis ( Physalis peruviana L.) Juice,” J. Food Process. Preserv., vol. 39, no. 6, pp. 1051–1060, Dec. 2015. https://doi.org/10.1111/jfpp.12320.

Icontec Internacional, “Frutas Frescas. Uchuva. Especificaciones,” Intituto Colombiano de Normas Técnicas, Bogotá, 1999.

M. L. Rojas, T. S. Leite, M. Cristianini, I. D. Alvim, and P. E. D. Augusto, “Peach juice processed by the ultrasound technology: Changes in its microstructure improve its physical properties and stability,” Food Res. Int., vol. 82, pp. 22–33, Apr. 2016. https://doi.org/10.1016/j.foodres.2016.01.011.

C. Dhuique-Mayer, M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, and M. J. Amiot, “Thermal Degradation of Antioxidant Micronutrients in Citrus Juice: Kinetics and Newly Formed Compounds,” J. Agric. Food Chem., vol. 55, no. 10, pp. 4209–4216, May 2007. https://doi.org/10.1021/jf0700529.

V. Santhirasegaram, Z. Razali, and C. Somasundram, “Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice,” Ultrason. Sonochem., vol. 20, no. 5, pp. 1276–1282, Sep. 2013. https://doi.org/10.1016/j.ultsonch.2013.02.005.

G. W. Latimer, Official Methods of Analysis of AOAC International, 21st ed. Estados Unidos: The scientific Association Dedicated to Analytical Excellence, 2016.

S. K. Jagota and H. M. Dani, “A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent,” Anal. Biochem., vol. 127, no. 1, pp. 178–182, Nov. 1982. https://doi.org/10.1016/0003-2697(82)90162-2.

D. J. Hart and K. J. Scott, “Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK,” Food Chem., vol. 54, no. 1, pp. 101–111, Jan. 1995. https://doi.org/10.1016/0308-8146(95)92669-B.

M.-L. Olivares-Tenorio, R. Verkerk, M. A. J. S. van Boekel, and M. Dekker, “Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry ( Physalis peruviana L . ),” J. Funct. Foods, vol. 32, pp. 46–57, May 2017. https://doi.org/10.1016/j.jff.2017.02.021.

Y. Lee and L. Howard, “Firmness and Phytochemical Losses in Pasteurized Yellow Banana Peppers ( Capsicum a nnuum ) As Affected by Calcium Chloride and Storage,” J. Agric. Food Chem., vol. 47, no. 2, pp. 700–703, Feb. 1999. https://doi.org/10.1021/jf980921h.

E. Domínguez Romero, “Influencia de los tratamientos térmicos en la elaboración de productos untables de kiwi formulados con isomaltulosa-fructosa o sacarosa,” Universidad Politécnica de Valencia, 2011.

I. P. Pardo, “Influencia de las condiciones de deshidratación en los niveles de compuestos con actividad antioxidante del tomate Cherry,” Universidad Politécnica de Valencia, 2007.

P. Burg and P. Fraile, “Vitamin C Destruction During the Cooking of a Potato Dish,” LWT - Food Sci. Technol., vol. 28, no. 5, pp. 506–514, Jan. 1995. https://doi.org/10.1006/fstl.1995.0085.

P. Khandpur and P. R. Gogate, “Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices,” Ultrason. Sonochem., vol. 27, pp. 125–136, Nov. 2015. https://doi.org/10.1016/j.ultsonch.2015.05.008.

K. Aaby, I. H. Grimsbo, M. B. Hovda, and T. M. Rode, “Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice,” Food Chem., vol. 260, pp. 115–123, Sep. 2018. https://doi.org/10.1016/j.foodchem.2018.03.100.

A. Oliveira, M. Pintado, and D. P. F. Almeida, “Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration,” LWT - Food Sci. Technol., vol. 49, no. 2, pp. 202–207, Dec. 2012. https://doi.org/10.1016/j.lwt.2012.07.008.

J. J. Torres Gama and C. M. Sylos, “Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice,” Food Chem., vol. 100, no. 4, pp. 1686–1690, Jan. 2007. https://doi.org/10.1016/j.foodchem.2005.01.062.

L. E. Ordóñez-Santos, L. Vázquez-Odériz, E. Arbones-Maciñeira, and M. Á. Romero-Rodríguez, “The influence of storage time on micronutrients in bottled tomato pulp,” Food Chem., vol. 112, no. 1, pp. 146–149, Jan. 2009. https://doi.org/10.1016/j.foodchem.2008.05.051.

E. Reboul et al., “Enrichment of Tomato Paste with 6% Tomato Peel Increases Lycopene and beta-Carotene Bioavailability in Men,” J. Nutr., vol. 135, no. 4, pp. 790–794, Apr. 2005. https://doi.org/10.1093/jn/135.4.790.

M. L. Nguyen and S. J. Schwartz, “Lycopene: chemical and biological properties,” Food Technol., vol. 53, no. 2, pp. 38–45, 1999.

L. E. Ordóñez-Santos and A. Vázquez-Riascos, “Effect of processing and storage time on the vitamin C and lycopene contents of nectar of pink guava (Psidium guajava L.).,” Arch. Latinoam. Nutr., vol. 60, no. 3, pp. 280–284, Sep. 2010.

D. B. R. Amaya, Carotenoides y preparación de alimentos: La retención de los Carotenoides Provitamina A en alimentos preparados, procesados y almacenados. Estados Unidos: Agencia para el Desarollo Internacional de los Estados Unidos, 1999.

How to Cite
[1]
L. Carcamo-Medina, M. Eleazar-Turcios, and L. E. Ordoñez-Santos, “Changes in the bioactive compounds of pasteurized gooseberry (Physalis peruviana L.) juice”, TecnoL., vol. 22, no. 45, pp. 145–153, May 2019.

Downloads

Download data is not yet available.
Published
2019-05-15
Section
Research Papers

Altmetric