Análisis bibliométrico del efecto de la luz en la producción de ficobiliproteínas

Palabras clave: Cromaticidad, biomasa, ficobilisoma, ficocianina, microalgas

Resumen

En la actualidad, diversos estudios han demostrado que la luz roja favorece el crecimiento de la biomasa, mientras que, comúnmente, longitudes de ondas rojas y azules promueven la concentración y producción de ficobiliproteínas, lo cual depende del género o especie, y de las condiciones del medio, así como de sus condiciones nativas, pues este mecanismo se genera como respuesta de adaptación, por lo que se hace necesario indagar para comprender estos fenómenos. En este orden de ideas, el propósito de esta investigación fue dar a conocer la importancia del aprovechamiento de la luz, como mecanismo de utilización de las microalgas para la producción de ficobiliproteínas, como contribución a la biotecnología industrial, la cual brinda información sobre condiciones y parámetros cultivos. La metodología de estudio se basó en un análisis documental a través de VOSviewer, usando la base de datos Web of Science, en la cual se utilizaron las palabras “Microalgae Pigment Light effect”. Con base en lo anterior, se pudo determinar que existe una correlación de palabras enfocadas a la producción de biocombustibles, como carotenoides, antoxantina, betacarotenos y luteína, aprovechando el uso de la luz como factor determinante, teniendo en cuenta que las cepas que más se relacionan con estos estudios son: Spirulina plantesis, Chrorella vulgaris y Chlamydomonas reinhardtii. El conocimiento de la aplicación de estos pigmentos es amplio, por lo que el estudio de la producción de pigmentos a partir de microalgas, evaluando el efecto de la luz, se ha convertido en un tema de gran interés, en especial para el mercado de pigmentos.

Biografía del autor/a

Nelson Alfonso Vega Contreras , Universidad Francisco de Paula Santander, Colombia

Universidad Francisco de Paula Santander- Cúcuta-Colombia, nelsonalfonsovc@ufps.edu.co

Christian Rivera Caicedo* , Universidad Francisco de Paula Santander, Colombia

Universidad Francisco de Paula Santander- Cúcuta-Colombia, christianrc@ufps.edu.co

Referencias bibliográficas

G. I. Leal Medina et al., “Producción de Ácidos Grasos Poliinsaturados a partir de Biomasa Microalgal en un Cultivo Heterotrófico”, Rev. Ion Investig. Optim. Nuevos procesos Ing., vol. 30, no 1, pp. 91–103, 2017. https://revistas.uis.edu.co/index.php/revistaion/article/view/6447/6656http://dx.doi.org/10.18273/revion.v30n1-2017007

R. J. Forero Trejos; R. Javier, “Aproximación a la problemática del manejo y tratamiento de las aguas residuales del corregimiento de Arauca (Palestina)”, (Trabajo de grado de Especialización), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Manizales, 2007. https://repositorio.unal.edu.co/handle/unal/2608

R. D. Candela Orduz, “Las microalgas y el tratamiento de aguas residuales: conceptos y aplicaciones. Una revisión bibliográfica”, (Monografía de grado para optar el título de Ingeniero Ambiental), Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Bucaramanga, 2016. https://repository.unad.edu.co/handle/10596/12170

Y. Chisti, “Microalgae biotechnology: A brief introduction”, en Handbook of Microalgae-Based Processes and Products, 2020, pp. 3–23. https://doi.org/10.1016/B978-0-12-818536-0.00001-4

D. Kovač; O. Babić; I. Milovanović; A. Mišan; J. Simeunović, “The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources”, Appl. Biochem. Microbiol., vol. 53, no 5, pp. 539–545, Sep. 2017. https://doi.org/10.1134/S000368381705009X

M. R. Andrade; J. A. V. Costa, “Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate”, Aquaculture, vol. 264, no 1–4, pp. 130–134, Apr. 2007. https://doi.org/10.1016/j.aquaculture.2006.11.021

W.-B. Kong; H. Yang; Y.-T. Cao; H. Song; S.-F. Hua; C.-G. Xia, “Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture”, Food Technol. Biotechnol, vol. 5, no. 1, pp. 62-69, 2013. https://www.ftb.com.hr/images/pdfarticles/2013/Vol.51_No.1/ftb_51-1_062-069.pdf

D. A. Bryant; G. Guglielmi; N. T. de Marsac; A.-M. Castets; G. Cohen-Bazire, “The structure of cyanobacterial phycobilisomes: a model”, Arch. Microbiol., vol. 123, no 2, pp. 113–127, Nov. 1979. https://doi.org/10.1007/BF00446810

J. Dagnino-Leone et al., “Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives”, Comput. Struct. Biotechnol. J., vol. 20, pp. 1506–1527, Dec. 2022. https://doi.org/10.1016/j.csbj.2022.02.016

T. J. Ashaolu et al., “Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications”, Int. J. Biol. Macromol., vol. 193, no Pt B, pp. 2320–2331, 2021. https://doi.org/10.1016/j.ijbiomac.2021.11.064

C. Rivera; L. Niño; G. Gelves, “Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes”, S. Afr. J. Chem. Eng., vol. 37, pp. 167–178, Jul. 2021. https://doi.org/10.1016/j.sajce.2021.05.005

X. Guan; S. Qin; F. Zhao; X. Zhang; X. Tang, “Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution”, Int. J. Biol. Sci., vol. 3, no 7, pp. 434–445, 2007. https://dx.doi.org/10.7150%2Fijbs.3.434

M. Soja-Woźniak; S. Craig; S. Kratzer; B. Wojtasiewicz; M. Darecki; C. Jones, “A novel statistical approach for ocean colour estimation of inherent optical properties and Cyanobacteria abundance in optically complex waters”, Remote Sens. (Basel), vol. 9, no 4, p. 343, Apr. 2017. https://doi.org/10.3390/rs9040343

M.-Y. Ho; F. Gan; G. Shen; C. Zhao; D. A. Bryant, “Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression”, Photosynth. Res., vol. 131, no 2, pp. 173–186, Feb. 2017. https://doi.org/10.1007/s11120-016-0309-z

M. Edding; F. Tala; J. Vásquez, “Fotosíntesis, productividad y algas marinas,” en Fisiología Vegetal, Ediciones Universidad de La Serena, 2006, pp. 1–39. https://exa.unne.edu.ar/biologia/fisiologia.vegetal/fotosintesisy productividadyalgasmarinas.pdf

G. Singh; S. K. Patidar, “Microalgae harvesting techniques: A review”, J. Environ. Manage., vol. 217, pp. 499–508, Jul. 2018. https://doi.org/10.1016/j.jenvman.2018.04.010

M. R. Gauthier; G. N. A. Senhorinho; J. A. Scott, “Microalgae under environmental stress as a source of antioxidants”, Algal Res., vol. 52, p. 102104, Dec. 2020. https://doi.org/10.1016/j.algal.2020.102104

L. C. Backer, “Cyanobacterial harmful algal blooms (CyanoHABs): Developing a public health response”, Lake Reserv. Manag., vol. 18, no 1, pp. 20–31, 2002. https://doi.org/10.1080/07438140209353926

L. Li; L. Li; K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin”, Remote Sens. Environ., vol. 157, pp. 9–23, Feb. 2015. https://doi.org/10.1016/j.rse.2014.06.009

I. R. Falconer, Cyanobacterial toxins of drinking water supplies. 1st Edition, Boca Ratón, FL, Estados Unidos de América, 2004. https://doi.org/10.1201/9780203022870

G. A. Codd; I. Chorus; M. Burch, “Design of Monitoring Programmes,” en Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, World Health Organization, 1999, pp. 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.8424&rep=rep1&type=pdf

I. Levine; J. Fleurence, Microalgae in health and Disease Prevention. Londres, Inglaterra: Elsevier Science, 2018. https://www.elsevier.com/books/microalgae-in-health-and-disease-

M. A. Borowitzka, “Biology of Microalgae”, en Microalgae in Health and Disease Prevention, Elsevier, 2018, pp. 23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7

R. Rajesh, “Exploring the sustainability performances of firms using environmental, social, and governance scores”, J. Clean. Prod., vol. 247, p. 119600, Feb. 2020. https://doi.org/10.1016/j.jclepro.2019.119600

B. D. S. Lima; C. A. da Silva; M. N. Boin; R. B. Medeiros, “As paisagens e as dinâmicas territoriais na Serra de Maracaju, Mato Grosso do Sul, Brasil”, Cuad. Geogr. Rev. Colomb. Geogr., vol. 29, no 1, pp. 224–241, Ene. 2020. https://doi.org/10.15446/rcdg.v29n1.75016

I. A. Borlongan; S. Suzuki; G. N. Nishihara; J. Kozono; R. Terada, “Effects of light quality and temperature on the photosynthesis and pigment content of a subtidal edible red alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan”, J. Appl. Phycol., vol. 32, no 2, pp. 1329–1340, Feb. 2020. https://doi.org/10.1007/s10811-020-02045-z

S. Sekar; M. Chandramohan, “Phycobiliproteins as a commodity: trends in applied research, patents and commercialization”, J. Appl. Phycol., vol. 20, no 2, pp. 113–136, Aug. 2007. https://doi.org/10.1007/s10811-007-9188-1

A. G. Martínez Romero; J. M. Méndez Contreras; N. A. Vallejo Cantú, “Evaluación de la remoción de nitrógeno y fósforo contenidos en aguas residuales de origen porcícola por medio de Spirulina maxima y Chlorella spp”, (Tesis de Maestría), Instituto Tecnológico de Orizaba, Tecnológico Nacional de México, 2019. http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/291

S. Kaur; J. I. S. Khattar; Y. Singh; D. P. Singh; A. S. Ahluwalia, “Extraction, purification and characterisation of Phycocyanin from Anabaena fertilissima PUPCCC 410.5: as a natural and food grade stable pigment”, J. Appl. Phycol., vol. 31, no 3, pp. 1685–1696, Jan. 2019. https://doi.org/10.1007/s10811-018-1722-9

N. A. Vega Contreras; M. L. Torres Salazar, “Evaluacion De Compuestos Fenolicos De (Citrus sinensis) Y Su Capacidad Antioxidante”, Cienc. Desarr., vol. 12, no 2, Sep. 2021. https://doi.org/10.19053/01217488.v12.n2.2021.11635

A. R. Grossman; D. Bhaya; Q. He, “Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting”, J. Biol. Chem., vol. 276, no 15, pp. 11449–11452, 2001. https://doi.org/10.1074/jbc.R100003200

I. de O Moreira et al., “Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt”, J. Sci. Food Agric., vol. 92, no 3, pp. 598–605, Feb. 2012. https://doi.org/10.1002/jsfa.4614

I. N. Stadnichuk; I. V. Tropin, “Phycobiliproteins: Structure, functions and biotechnological applications”, Appl. Biochem. Microbiol., vol. 53, no 1, pp. 1–10, Feb. 2017. https://doi.org/10.1134/S0003683817010185

X. Wang; P. Zhang; Y. Wu; L. Zhang, “Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis”, J. Appl. Phycol., vol. 32, no 6, pp. 4189–4197, Oct. 2020. https://doi.org/10.1007/s10811-020-02264-4

M. Corbella Morató; Z. S. D. Toa; G. Scholes; F. J. Luque; C. Curutchet, “Determination of the protonation preferences of bilin pigments in cryptophyte antenna complexes”, Phys. Chem., no. 33, Jul. 2018. https://doi.org/10.1039/C8CP02541J

A. Gutu; A. D. Nesbit; A. J. Alverson; J. D. Palmer; D. M. Kehoe, “Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression”, Proc. Natl. Acad. Sci. U. S. A., vol. 110, no 40, pp. 16253–16258, Oct. 2013. https://doi.org/10.1073/pnas.1306332110

A. Gutu; D. M. Kehoe, “Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria”, Mol. Plant, vol. 5, no 1, pp. 1–13, Jan. 2012. https://doi.org/10.1093/mp/ssr054

A. R. Grossman, “A molecular understanding of complementary chromatic adaptation”, Photosynth. Res., vol. 76, no 1/3, pp. 207–215, Apr. 2003. https://doi.org/10.1023/A:1024907330878

Y. Hirose et al., “Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in Cyanobacteria”, Mol. Plant, vol. 12, no 5, pp. 715–725, May. 2019. https://doi.org/10.1016/j.molp.2019.02.010

M. Muramatsu; Y. Hihara, “Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses”, J. Plant Res., vol. 125, no 1, pp. 11–39, Oct. 2011. https://link.springer.com/article/10.1007/s10265-011-0454-6

C. W. Mullineaux, “Electron transport and light-harvesting switches in cyanobacteria”, Front. Plant Sci., vol. 5, art. 7, p. 1-6, Jan. 2014. https://doi.org/10.3389/fpls.2014.00007

L. B. Wiltbank; D. M. Kehoe, “Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors”, Nat. Rev. Microbiol., vol. 17, no 1, pp. 37–50, Jan. 2019. https://www.nature.com/articles/s41579-018-0110-4

G. Markou, “Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode”, Appl. Biochem. Biotechnol., vol. 172, no 5, pp. 2758–2768, Jan. 2014. https://link.springer.com/article/10.1007/s12010-014-0727-3

D. da F. Prates; E. M. Radmann; J. H. Duarte; M. G. de Morais; J. A. V. Costa, “Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production”, Bioresour. Technol., vol. 256, pp. 38–43, May. 2018. https://doi.org/10.1016/j.biortech.2018.01.122

B. L. Montgomery, “Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria”, Curr. Opin. Plant Biol., vol. 37, pp. 18–23, Jun. 2017. https://doi.org/10.1016/j.pbi.2017.03.009

V. M. Luimstra; J. M. Schuurmans; A. M. Verschoor; K. J. Hellingwerf; J. Huisman; H. C. P. Matthijs, “Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II”, Photosynth. Res., vol. 138, no 2, pp. 177–189, Jul. 2018. https://doi.org/10.1007/s11120-018-0561-5

J. K. Kim; Y. Mao; G. Kraemer; C. Yarish, “Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting”, Aquaculture, vol. 436, pp. 52–57, Jan. 2015. https://doi.org/10.1016/j.aquaculture.2014.10.037

Y.-J. Dai et al., “Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture”, J. Microbiol. Biotechnol., vol. 23, no 4, pp. 534–538, 2013. https://doi.org/10.4014/jmb.1205.05037

Z. Khan; W. O. Wan Maznah; M. S. M. Faradina Merican; P. Convey; N. Najimudin; S. A. Alias, “A comparative study of phycobilliprotein production in two strains of Pseudanabaena isolated from Arctic and tropical regions in relation to different light wavelengths and photoperiods”, Polar Sci., vol. 20, part.1, pp. 3–8, Jun. 2019. https://doi.org/10.1016/j.polar.2018.10.002

S. K. Ojit et al., “The response of phycobiliproteins to light qualities in Anabaena circinalis”, J. Appl. Biol. Biotechnol., vol. 34, no. 3, pp. 1-6, Jun. 2015. http://dx.doi.org/10.7324/JABB.2015.3301

S. K. Mishra; A. Shrivastav; R. R. Maurya; S. K. Patidar; S. Haldar; S. Mishra, “Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India”, Protein Expr. Purif., vol. 81, no 1, pp. 5–10, Jan. 2012. https://doi.org/10.1016/j.pep.2011.08.011

J. I. S. Khattar et al., “Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions”, Algal Res., vol. 12, pp. 463–469, Nov. 2015. https://doi.org/10.1016/j.algal.2015.10.007

J. Park; T. B. Dinh, “Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima”, Bioresour. Technol., vol. 291, p. 121846, Nov. 2019. https://doi.org/10.1016/j.biortech.2019.121846

E. Kilimtzidi; S. Cuellar Bermudez; G. Markou; K. Goiris; D. Vandamme; K. Muylaert, “Enhanced phycocyanin and protein content of Arthrospiraby applying neutral density and red light shading filters: a small‐scale pilot experiment”, J. Chem. Technol. Biotechnol., vol. 94, no 6, pp. 2047–2054, Jun. 2019. https://doi.org/10.1002/jctb.5991

H. A. Wicaksono; W. H. Satyantini; E. D. Masithah, “The spectrum of light and nutrients required to increase the production of phycocyanin Spirulina platensis,” IOP Conf. Ser. Earth Environ. Sci., vol. 236, p. 012008, Mar. 2019. https://doi.org/10.1088/1755-1315/236/1/012008

H.-B. Chen et al., “Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes”, Biochem. Eng. J., vol. 53, no 1, pp. 52–56, Dec. 2010. https://doi.org/10.1016/j.bej.2010.09.004

M. B. Bachchhav; M. V. Kulkarni; A. G. Ingale, “Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode”, J. Inst. Eng. (India) ser. E, vol. 98, no 1, pp. 41–45, Dec. 2016. https://doi.org/10.1007/s40034-016-0090-8

P.-P. Han et al., “The regulation of photosynthetic pigments in terrestrial Nostoc flagelliforme in response to different light colors”, Algal Res., vol. 25, pp. 128–135, Jul. 2017. https://doi.org/10.1016/j.algal.2017.04.009

A. Parmar; N. K. Singh; R. Dhoke; D. Madamwar, “Influence of light on phycobiliprotein production in three marine cyanobacterial cultures”, Acta Physiol. Plant, vol. 35, no 6, pp. 1817–1826, Jan. 2013. https://doi.org/10.1007/s11738-013-1219-8

J. Silva Navas, “Modulación del sistema radicular en condiciones de estrés”, (Tesis Doctoral), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, 2016. https://eprints.ucm.es/id/eprint/36430/

S. Kasiri; A. Ulrich; V. Prasad, “Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water”, Chem. Eng. Sci., vol. 137, pp. 697–711, Dec. 2015. https://doi.org/10.1016/j.ces.2015.07.004

R. Kandilian; A. Soulies; J. Pruvost; B. Rousseau; J. Legrand; L. Pilon, “Simple method for measuring the spectral absorption cross-section of microalgae”, Chem. Eng. Sci., vol. 146, pp. 357–368, Jun. 2016. https://doi.org/10.1016/j.ces.2016.02.039

Q. Huang; L. Yao; T. Liu; J. Yang, “Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum”, Chem. Eng. Sci., vol. 84, pp. 718–726, Dec. 2012. https://doi.org/10.1016/j.ces.2012.09.017

H.-P. Luo et al., “Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT”, Chem. Eng. Sci., vol. 58, no 12, pp. 2519–2527, Jun. 2003. https://doi.org/10.1016/S0009-2509(03)00098-8

N. Yeh; J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation”, Renew. Sustain. Energy Rev., vol. 13, no 8, pp. 2175–2180, Oct. 2009. https://doi.org/10.1016/j.rser.2009.01.027

Cómo citar
[1]
N. A. . Vega Contreras y C. . Rivera Caicedo, «Análisis bibliométrico del efecto de la luz en la producción de ficobiliproteínas», TecnoL., vol. 25, n.º 54, p. e2386, ago. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-08-17
Sección
Artículos de revisión
Crossref Cited-by logo