Design of Influent Distribution System in Domestic Wastewater Treatment Units

Keywords: Treatment plants, anaerobic reactors, primary settler, distribution system, wastewater treatment

Abstract

The efficient treatment of domestic wastewater is associated with good operational practices in wastewater treatment plants (WWTP) and the proper design of each treatment unit, which ensures the correct hydraulic performance of each WWTP. For this reason, the objective of this article was to study the design of the multiple influent distribution systems of a high-rate primary sedimentary, a UASB (Upflow Anaerobic Sludge Blanket) reactor, and an up-flow anaerobic filter (FAFA) in the WWTPs of the municipalities of San Carlos and San Roque, and in the township of Santiago, respectively, located in Antioquia-Colombia. For this purpose, the methodology proposed by Hudson in 1981 was used to evaluate the performance of the current design and, subsequently, a pre-dimensioning was carried out to distribute the flow uniformly, to have velocities within the ranges recommended by the literature, and to obtain the total head loss generated by the distribution manifold in each treatment unit evaluated. It was found that the existing design is not efficient and that the new pre-dimensioning ensures homogeneous flow distribution and provides velocities that contribute positively to the treatment process. The study concludes that the smaller the number of orifices and the larger the pipe diameter, the more uniform the flow distribution, and that the total head loss depends on both the velocity head and the head loss coefficient. The diameter of the orifice was the predominant parameter to control the inlet velocity of the treatment units.

Author Biographies

Astrid L. Macías , Universidad de Antioquia, Colombia

Grupo Diagnóstico y Control de la Contaminación (GDCON), Grupo de Investigación en Gestión y Modelación Ambiental (GAIA), Escuela Ambiental, Facultad de Ingeniería, sede de Investigaciones Universitarias (SIU), Universidad de Antioquia. Calle 70 No. 52-21, Medellín-Colombia, astrid.macias@udea.edu.co

Diana C. Rodríguez* , Universidad de Antioquia, Colombia

Grupo Diagnóstico y Control de la Contaminación (GDCON), Escuela Ambiental, Facultad de Ingeniería, sede de Investigaciones Universitarias (SIU), Universidad de Antioquia. Calle 70 No. 52-21, Medellín-Colombia, diana.rodriguez@udea.edu.co

Francisco J. Molina, Universidad de Antioquia, Colombia

Grupo de Investigación en Gestión y Modelación Ambiental (GAIA), Escuela Ambiental, Facultad de Ingeniería, sede de Investigaciones Universitarias (SIU), Universidad de Antioquia. Calle 70 No. 52-21, Medellín-Colombia, francisco.molina@udea.edu.co

References

J. Tang, C. Zhang, X. Shi, J. Sun, and J. A. Cunningham, “Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency,” J Environ Manage, vol. 234, pp. 396–403, Mar. 2019, https://doi.org/10.1016/j.jenvman.2018.12.097

H. Awad, M. Gar Alalm, and H. Kh. El-Etriby, “Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries,” Science of The Total Environment, vol. 660, pp. 57–68, Apr. 2019, https://doi.org/10.1016/j.scitotenv.2018.12.386

F. Molina and R. Mejía, “Presente y futuro del tratamiento de aguas residuales municipales en el departamento de Antioquia: una mirada inicial,” Ingeniería y Sociedad, no. 5, pp. 34–38, Dec. 2012, [Online]. Available: https://revistas.udea.edu.co/index.php/ingeso/article/view/13985

M. Esmaeili Varaki, J. Farhoudi, and D. Walker, “Study of flow structure and sediment entry to a lateral intake,” Proceedings of the Institution of Civil Engineers - Water Management, vol. 164, no. 7, pp. 347–360, Jul. 2011, https://doi.org/10.1680/wama.2011.164.7.347

J. A. Valencia, Teoría y práctica de la purificación del agua, 3rd ed., vol. 1. Bogotá D.C, Colombia: McGraw-Hill Interamericana, 2000. [Online]. Available: https://books.google.com.co/books?id=xljBOwAACAAJ

L. Sun and N. Chang, “Integrated-signal-based leak location method for liquid pipelines,” J Loss Prev Process Ind, vol. 32, pp. 311–318, Nov. 2014, https://doi.org/10.1016/j.jlp.2014.10.001

J. A. Pérez Parra, Manual de Tratamiento de Agua, 1st ed. Universidad Nacional de Colombia, 1981. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/2056

G. Tchobanoglous, F. L. Burton, H. D. Stensel, Inc. Metcalf & Eddy, and F. Burton, Wastewater Engineering: Treatment and Reuse, 1 st. New York, USA: McGraw-Hill Education, 2003. [Online]. Available: https://books.google.com.co/books?id=-eoeAQAAIAAJ

A. C. van Haandel and G. Lettinga, Tratamento anaeróbio de esgotos: um manual para regiões de clima quente, EpGraf, Campina Grande-PB, Brasil, vol. 4, 1994.

R. L. Droste and R. L. Gehr, Theory and Practice of Water and Wastewater Treatment, John Wiley & Sons. New York, USA: Wiley, 2018. [Online]. Available: https://books.google.com.co/books?id=gmV-DwAAQBAJ

J. A. Cabrera and F. J. F.J. Otaya, “Determinación y evaluación de la distribución de flujo y su eficiencia, en la estructura de entrada sumergida para el conducto principal y laterales de sección constante y variable, en un tanque decantador de placas inclinadas,” Universidad de Nariño, Pasto, 2014. Accessed: Apr. 11, 2022. [Online]. Available: http://sired.udenar.edu.co/id/eprint/1677

S. D. Graber, “Manifold Flow in Pressure-Distribution Systems,” J Pipeline Syst Eng Pract, vol. 1, no. 3, pp. 120–126, Aug. 2010, https://doi.org/10.1061/(ASCE)PS.1949-1204.0000059

M. Rahmani Firozjaei, S. A. A. Salehi Neyshabouri, S. Amini Sola, and S. H. Mohajeri, “Numerical Simulation on the Performance Improvement of a Lateral Intake Using Submerged Vanes,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 43, no. 2, pp. 167–177, Jun. 2019, https://doi.org/10.1007/s40996-018-0126-z

H. E. Hudson, “Water clarification processes: Practical Design and Evaluation,” First Edition, Van Nostrand Reinhold Co, 1981.

H. Haddad, E. Ahmad, and K. Azizi, “Numerical simulation of the inlet sedimentation rate to lateral intakes and comparison with experimental results,” Journal of Research in Ecology, vol. 5, no. 1, pp. 464–472, Feb. 2017, [Online]. Available: https://www.academia.edu/33966292/Numerical_simulation_of_the_inlet_sedimentation_rate_to_lateral_intakes_and_comparison_with_experimental_results

Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS), Tratamiento de agua para consumo humano: Plantas de filtración rápida. Lima, Perú, 2004.

Alcaldía Municipal San Carlos Antioquia, “Plan de desarrollo del municipio de San Carlos (2016-2019),” San Carlos, Antioquia, 2016. [Online]. Available: https://www.sancarlos-antioquia.gov.co/Transparencia/PLANDEDESARROLLOSANCARLOSSOMOSTODOS/SitePages/Inicio.aspx

F. A. Úsuga, A. F. Patiño, D. C. Rodríguez, and G. A. Peñuela, “Kinetic study and removal of contaminants in the leachate treatment using subsurface wetlands at pilot scale,” Revista ION, vol. 30, no. 2, pp. 55–63, May 2017, https://doi.org/10.18273/revion.v30n2-2017005

S. R. Qasim, Wastewater Treatment and Reuse, Theory and Design Examples, Volume 1: Principles and Basic Treatment. CRC Press, 2017. https://doi.org/10.1201/b22368

J. Arboleda Valencia, Teoría, diseño y control de los procesos de clarificación del agua. Lima, Perú: McGraw-Hill Interamericana, 1972.

M. von Sperling and C. de Lemos Chernicharo, Biological Wastewater Treatment in Warm Climate Regions Volume I, Londres: IWA Publishing, 2005. [Online]. Available: https://es.b-ok.lat/book/3600509/1bbab6

K. Hirom and T. T. Devi, “Application of Computational Fluid Dynamics in Sedimentation Tank Design and Its Recent Developments: a Review,” Water Air Soil Pollut, vol. 233, no. 1, p. 22, Jan. 2022, https://doi.org/10.1007/s11270-021-05458-9

C. Reyes, F. Apaz, Y. Niño, B. Barraza, C. Arratia, and C. F. Ihle, “A review on steeply inclined settlers for water clarification,” Miner Eng, vol. 184, p. 107639, Jun. 2022, https://doi.org/10.1016/j.mineng.2022.107639

F. Bouisfi, A. Bouisfi, H. Ouarriche, M. el Bouhali, and M. Chaoui, “The effect of inlet and outlet position and sediments concentration on sedimentation tank efficiency,” in 2018 4th International Conference on Optimization and Applications (ICOA), Apr. 2018, pp. 1–4. https://doi.org/10.1109/ICOA.2018.8370535

C. He, J. Wood, J. Marsalek, and Q. Rochfort, “Using CFD Modeling to Improve the Inlet Hydraulics and Performance of a Storm-Water Clarifier,” Journal of Environmental Engineering, vol. 134, no. 9, pp. 722–730, Sep. 2008, https://doi.org/10.1061/(ASCE)0733-9372(2008)134:9(722)

P. Rodríguez López, A. Gutiérrez Lavín, M. M. Mahamud López, and J. L. Bueno de las Heras, “Flow models for rectangular sedimentation tanks,” Chemical Engineering and Processing: Process Intensification, vol. 47, no. 9–10, pp. 1705–1716, Sep. 2008, https://doi.org/10.1016/j.cep.2007.09.020

A. G. Griborio, J. A. Rodríguez, L. Enriquez, and J. A. McCorquodale, “Use of three-dimensional computational fluid dynamics model for a new configuration of circular primary settling tank,” Water Science and Technology, vol. 84, no. 2, pp. 333–348, Jul. 2021, https://doi.org/10.2166/wst.2021.110

How to Cite
[1]
A. L. Macías, D. C. Rodríguez, and F. J. Molina, “Design of Influent Distribution System in Domestic Wastewater Treatment Units”, TecnoL., vol. 25, no. 55, p. e2428, Nov. 2022.

Downloads

Download data is not yet available.
Published
2022-11-18
Section
Research Papers

Altmetric

Crossref Cited-by logo