Optimization of Essential Oils Microwave Assisted Extraction Process of Peperomia subspathulata in Colombian Southwest
Abstract
Essential oil extraction is an area of study that is advancing with the implementation of new extraction methods in the search for new chemotypes, improved yields, and reduced energy consumption. It is applied in the agroindustry and pharmaceutical sciences, among others. In this study, new technologies for extracting volatiles from Colombian plant species were explored, focusing on parameter optimization through an experimental design using microwave radiation. The objective was to optimize power and time parameters to maximize the yield of essential oils of Peperomia subspathulata, a species that had not been studied before in the Nariño department. The methodology consisted of microwave-assisted hydrodistillation under a 32-factorial design and the response surface method. The chemical profile was obtained through gas chromatography and mass spectrometry, and the yields were compared. The results obtained in this study were as follows: the optimal microwave parameters were 800 W and 81 minutes, with a yield of 1.49% for leaves and 0.99% for stems, values higher than those of conventional hydrodistillation (1.15% and 0.84%, respectively). The chemical profile of the essential oils revealed a new chemotype composed of Myristicin, Safrole, and alpha-bisabolol in both methods. Likewise, the chromatographic areas of these components were optimized, obtaining values of 46.88% for Safrole, 58.84% for Myristicin and 18.58% for alpha-bisabolol. In conclusion, this study establishes the implementation of an innovative extraction methodology with high yields and reduced times; moreover, a new chemotype for P. subspathulata from the Nariño province, laying the foundation for the study of other aromatic species in future research.
References
H. López-Salazar, B. H. Camacho-Díaz, M. L. A. Ocampo, and A. R. Jiménez-Aparicio, “Microwave-assisted extraction of functional compounds from plants: A Review,” BioResour, vol. 18, no. 3, pp. 6614-6638, Jun. 2023. https://doi.org/10.15376/biores.18.3.Lopez-Salazar
Q. Toan Tran et al., “Optimization of microwave-assisted extraction process of Callicarpa candicans (Burm. f.) Hochr essential oil and its inhibitory properties against some bacteria and cancer cell lines,” Processes, vol. 8, no. 2, p. 173, Feb. 2020. https://doi.org/10.3390/pr8020173
S. Hihat, N. Touati, A. Sellal, and K. Madani, “Response Surface Methodology: An Optimal Design for Maximising the Efficiency of Microwave-Assisted Extraction of Total Phenolic Compounds from Coriandrum sativum Leaves,” Processes, vol. 12, no. 5, p. 1031, May. 2024. https://doi.org/10.3390/pr12051031
J. Domínguez Domínguez, and E. Castaño Tostado, “Optimización estadística del proceso,” in Diseño de experimentos Estrategias y análisis en ciencias e ingeniería, Ciudad de México, México: Alfaomega Editorial, 2010, pp. 303-304. https://api.pageplace.de/preview/DT0400.9786076227558_A43652600/preview-9786076227558_A43652600.pdf
I. M. Savić, I. M. Savić Gajić, and D. G. Gajić, “Optimization of the Microwave-Assisted Extraction of Caffeine from Roasted Coffee Beans,” Foods, vol. 13, no. 15, p. 2333, Jul. 2024. https://doi.org/10.3390/foods13152333
A. H. Nour, R. H. Modather, R. M. Yunus, A. A. M. Elnour, and N. Ain Ismail, “Characterization of bioactive compounds in patchouli oil using microwave-assisted and traditional hydrodistillation methods,” Ind. Crops Prod., vol. 208, p. 117901, Feb. 2024. https://doi.org/10.1016/j.indcrop.2023.117901
M. Hearunyakij, and W. Phutdhawong, “Optimization, Yield and Chemical Composition of Essential Oil from Kaempferia galanga L. Rhizome: Comparative Study with Microwave Assisted Extraction and Hydrodistillation,” J. Essent Oil Bear Plants, vol. 25, no. 3, pp. 444-455, Aug. 2022. https://doi.org/10.1080/0972060X.2022.2108727
E. Mazzara et al., “A design of experiment (Doe) approach to model the yield and chemical composition of ajowan (trachyspermum ammi l.) essential oil obtained by microwave-assisted extraction,” Pharmaceuticals, vol. 14, no. 8, p. 816, Aug. 2021. https://doi.org/10.3390/ph14080816
B. Liu, J. Fu, Y. Zhu, and P. Chen, “Optimization of microwave-assisted extraction of essential oil from lavender using response surface methodology,” J. Oleo Sci., vol. 67, no. 10, pp. 1327-1337, Oct. 2018. https://doi.org/10.5650/jos.ess18019
M. Elyemni et al., “Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation,” Scient. World J., vol. 2019, p. 659432, Apr. 2019. https://doi.org/10.1155/2019/3659432
N. Đorđević et al., “The effect of distillation methods on the yield, composition and biological activity of basil (Ocimum basilicum L.) essential oil,” Adv. Technol., vol. 11, no. 2, pp. 16-25, Aug. 2022. https://doi.org/10.5937/savteh2202016d
P. Suttiarporn, N. Wongkattiya, K. Buaban, P. Poolprasert, and K. Tanruean, “Process Optimization of Microwave Assisted Simultaneous Distillation and Extraction from Siam cardamom Using Response Surface Methodology,” Processes, vol. 8, no. 4, p. 449, Apr. 2020. https://doi.org/10.3390/PR8040449
P. Veggi, J. Martinez, and A. Meireles, “Fundamentals of microwave extraction,” in Microwave-Assisted Extraction for Bioactive Compounds, F. Chemat, and G. Cravotto, Eds., New York, USA: Springer, 2013, ch., 2, pp. 15-52. https://doi.org/10.1007/978-1-4614-4830-3_2
S. K. Movaliya, “Extraction of essential oil by Microwave-assisted extraction: A review,” Int. J. Adv. Res. Innov. Ideas Educ., vol. 3, no. 2, pp. 5312-5321, Oct. 2017. https://ijariie.com/FormDetails.aspx?MenuScriptId=3901
EMR Claight Corp., “Mercado de Aceites Esenciales en Colombia - Por Tipo (Aceite de Naranja, Aceite de Menta, Aceite de Clavo, Aceite de Eucalipto, Aceite de Lavanda, Aceite de Limón, Otros); Por Aplicación (Alimentos y Bebidas, Fármacos y Formulaciones Medicinales, Limpieza y Hogar, Spa y Relajación, Otros); Dinámica del Mercado (2024-2032) y Panorama Competitivo,” EMR Claight Corp. Accessed: Jan. 4, 2025. [Online]. Available: https://www.informesdeexpertos.com/informes/mercado-de-aceites-esenciales-en-colombia/toc
C. Ulloa Ulloa et al., “An integrated assessment of the vascular plant species of the Americas,” Science, vol. 358, no. 6370, pp. 1614-1617, Dec. 2017. https://doi.org/10.1126/science.aao0398
V. J. Alencar Fonseca et al., “Characterization and analysis of the bioactivity of the Piper rivinoides Kunth essential oil and its components myristicin and elemicin, against opportunistic fungal pathogens,” Microb. Pathog., vol. 199, p. 107242, Feb. 2025. https://doi.org/10.1016/j.micpath.2024.107242
J. Dognini et al., “Antibacterial activity of high safrole contain essential oils from Piper xylosteoides (Kunth) Steudel,” J. Essential Oil Res., vol. 24, no. 3, pp. 241-244, May. 2012. https://doi.org/10.1080/10412905.2012.676768
W. M. N. H. Wan Salleh, F. Ahmad, K. Heng Yen, and H. Mohd Sirat, “Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper caninum Blume,” Int. J. Mol. Sci., vol. 12, no. 11, pp. 7720-7731, Nov. 2011. https://doi.org/10.3390/ijms12117720
J. K. Da Silva, R. Da Trindade, N. S. Alves, P. L. Figueiredo, J. G. S. Maia, and W. N. Setzer, “Essential Oils from Neotropical Piper Species and Their Biological Activities,” Int. J. Mol. Sci., vol. 18, no. 12, p. 2571, Dec. 2017. https://doi.org/10.3390/IJMS18122571
B. Salehi et al., “Piper species: A comprehensive review on their phytochemistry, biological activities and applications,” Molecules, vol. 24, no. 7, p. 1364, Apr. 2019. https://doi.org/10.3390/molecules24071364
D. Gutiérrez, “Antifungal activity of Peperomia subspathulata Yunck against three phytopathogenic fungi: Aspergillus, Botrytis, and Penicillium species,” Rev. Colomb. Cienc. Hortic., vol. 18, no. 1, p. e16885, Jan. 2024. https://doi.org/10.17584/rcch.2024v18i1.16885
P. A. Robayo-Gama, C. E. Quijano, G. Morales, and J. A. Pino, “Composition of the essential oil from leaves of Peperomia galioides HBK grown in colombia,” J. Essent Oil Res., vol. 22, no. 4, pp. 307-309, Dec. 2010. https://doi.org/10.1080/10412905.2010.9700332
G. Tafurt-García, E. Valenzuela Vergara, Y. Salguero Rodríguez, R. A. Alegría Macías, and E. Stashenko, “Volatile compounds in Piperaceae collected in Arauca- Colombia Northeastern region and Colombian-Venezuelan plains,” in Essential Oils Contributions to the Chemical-Biological Knowledge, V. F. Da Veiga Jr., I. Ajani Ogunwande, and J. L. Martinez, Eds., Boca Ratón, USA: CRC Press, 2023, pp. 1-18. https://doi.org/10.1201/9781003226345
A. Muñoz-Acevedo, M. C. González, J. E. Alonso, and K. C. Flórez, “The Repellent Capacity against Sitophilus zeamais (Coleoptera: Curculionidae) and In Vitro Inhibition of the Acetylcholinesterase Enzyme of 11 Essential Oils from Six Plants of the Caribbean Region of Colombia,” Molecules, vol. 29, no. 8, p. 1753, Apr. 2024. https://doi.org/10.3390/molecules29081753
A. Delgado, S. Ruiz, L. Arévalo, G Castillo, and N. Viles, “Plan de Acción en Biodiversidad del departamento de Nariño 2006-2030 Propuesta Técnica,” Corponariño, Gobernación de Nariño - Secretaría de Agricultura, Instituto de Investigaciòn de Recursos Biológicos Alexander von Humboldt, Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales - UAESPNN - Territorial Surandina, Universidad de Nariño, Universidad Mariana y Asociación para el Desarrollo Campesino, 2008. Accessed: Jul. 19, 2025. [Online]. Available: https://corponarino.gov.co/expedientes/intervencion/biodiversidad/parteI.pdf
A. F. Angulo, R. A. Rosero, and M. S. González Insuasti, “Estudio etnobotánico de las plantas medicinales utilizadas por los habitantes del corregimiento de Genoy, Municipio de Pasto, Colombia,” Univ. Salud, vol. 14, no. 2, pp. 168-185, Jul-Dec. 2012. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-71072012000200007
R. P. Adams, Identification of essential oil components by gas chromatography/mass spectrometry, Carol Stream Illinois, USA: Allured Business Media, 2012. https://diabloanalytical.com/ms/essential-oil-components-by-gcms/essential_oil_components_ebook.pdf
V. I. Babushok, P. J. Linstrom, and I. G. Zenkevich, “Retention Indices for Frequently Reported Compounds of Plant Essential Oils,” J. Phys. Chem. Ref. Data, vol. 40, no. 4, p. 043101, Dec. 2011. https://doi.org/10.1063/1.3653552
M. T. Golmakani, and K. Rezaei, “Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L.,” Food Chem., vol. 109, no. 4, pp. 925-930, Aug. 2008. https://doi.org/10.1016/j.foodchem.2007.12.084
I. M. Bodea, A. Garre Pérez, G. M. Cătunescu, and A. Palop, “A Review on Microwave and Ultrasound-Assisted Extractions of Essential Oil from Orange Peel Waste,” Food Bioprocess Technol., vol. 18, pp. 7060-7082, Aug. 2025. https://doi.org/10.1007/s11947-025-03882-x
S. Chemat, H. Aït-Amar, A. Lagha, and D. C. Esveld, “Microwave-assisted extraction kinetics of terpenes from caraway seeds,” Chem. Engin. Process.: Process Inten., vol. 44, no. 12, pp. 1320-1326, Dec. 2005. https://doi.org/10.1016/j.cep.2005.03.011
A. Shang et al., “Optimization and characterization of microwave-assisted hydro-distillation extraction of essential oils from Cinnamomum camphora leaf and recovery of polyphenols from extract fluid,” Molecules, vol. 25, no. 14, p. 3213, Jul. 2020. https://doi.org/10.3390/molecules25143213
S. Mollaei, F. Sedighi, B. Habibi, S. Hazrati, and P. Asgharian, “Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation,” Ind. Crops Prod., vol. 137, pp. 43-51, Oct. 2019. https://doi.org/10.1016/j.indcrop.2019.05.015
X. Peng et al., “Recent advances of kinetic model in the separation of essential oils by microwave-assisted hydrodistillation,” Ind. Crops Prod., vol. 187, no. part A, p. 115418, Nov. 2022. https://doi.org/10.1016/j.indcrop.2022.115418
H. W. Wang, Y. Q. Liu, S. L. Wei, Z. J. Yan, and K. Lu, “Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers,” Molecules, vol. 15, no. 11, pp. 7715-7723, Oct. 2010. https://doi.org/10.3390/molecules15117715
W. Phutdhawong, R. Kawaree, S. Sanjaiya, W. Sengpracha, and D. Buddhasukh, “Microwave-Assisted Isolation of Essential oil of Cinnamomum iners Reinw. ex Bl.: Comparison with Conventional Hydrodistillation,” Molecules, vol. 12, no. 4, pp. 868-877, Apr. 2007. https://doi.org/10.3390/12040868
S. B. Beltrán, L. J. Sierra, J. L. Fernández-Alonso, A. K. Romero, J. R. Martínez, and E. E. Stashenko, “Antioxidant Properties and Secondary Metabolites Profile of Hyptis colombiana at Various Phenological Stages,” Molecules, vol. 28, no. 19, p. 6767, Sep. 2023. https://doi.org/10.3390/molecules28196767
J. C. Henríquez, L. V. Duarte, L. J. Sierra, J. L. Fernández-Alonso, J. R. Martínez, and E. E. Stashenko, “Chemical Composition and In Vitro Antioxidant Activity of Salvia aratocensis (Lamiaceae) Essential Oils and Extracts,” Molecules, vol. 28, no. 10, p. 4062, May. 2023. https://doi.org/10.3390/molecules28104062
N. Ríos, E. E. Stashenko, and J. E. Duque, “Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae),” Rev. Bras. Entomol., vol. 61, no. 4, pp. 307-311, Oct-Dec. 2017. https://doi.org/10.1016/j.rbe.2017.08.005
M. Akhbari, S. Masoum, F. Aghababaei, and S. Hamedi, “Optimization of microwave assisted extraction of essential oils from Iranian Rosmarinus officinalis L. using RSM,” J. Food Sci. Technol., vol. 55, no. 6, pp. 2197-2207, Jun. 2018. https://doi.org/10.1007/s13197-018-3137-7
J. Wainer, A. Thomas, T. Chimhau, and K. G. Harding, “Extraction of Essential Oils from Lavandula × intermedia ‘Margaret Roberts’ Using Steam Distillation, Hydrodistillation, and Cellulase-Assisted Hydrodistillation: Experimentation and Cost Analysis,” Plants, vol. 11, no. 24, p. 3479, Dec. 2022. https://doi.org/10.3390/plants11243479
A. M. P. De Díaz, P. P. Díaz, and H. Cardoso, “Volatile Constituents of Peperomia subespatulata,” Planta Med., vol. 54, no. 1, pp. 92-93, Feb. 1988. https://doi.org/10.1055/s-2006-962356
T. Vogt, “Phenylpropanoid biosynthesis,” Mol. Plant, vol. 3, no. 1, pp. 2-20, Jan. 2010. https://doi.org/10.1093/mp/ssp106
K. Ramírez‐Alarcón et al., “Myristicin: From its biological effects in traditional medicine in plants to preclinical studies and use as ecological remedy in plant protection,” eFood, vol. 4, no. 3, p. e90, Jun. 2023. https://doi.org/10.1002/efd2.90
S. Rathore, S. Mukhia, S. Kapoor, V. Bhatt, R. Kumar, and R. Kumar, “Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya,” Sci. Rep., vol. 12, no. 3305, pp. 283-298, Dec. 2022. https://doi.org/10.1038/s41598-022-07298-x
S. H. Najafian, M. Aeineh, and M. Hosseinifarahi, “Phenological Variations in Essential Oil Composition and Phytochemical Characteristics of Myrtus communis L.,” Russ. J. Plant Physiol., vol. 72, no. 2, p. 53, May. 2025. https://doi.org/10.1134/S1021443724609984
N. Jeyaratnam, A. H. Nour, and J. O. Akindoyo, “Comparative Study between Hydrodistillation and Microwave-assisted Hydrodistillation for Extraction of Cinnamomum cassia Oil,” ARPN J. Eng. Appl. Sci., vol. 11, no. 4, pp. 2647-2652, Feb. 2016. http://umpir.ump.edu.my/id/eprint/12617/
N. El Hachlafi et al., “Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking,” Separations, vol. 11, no. 7, p. 199, Jul. 2024. https://doi.org/10.3390/separations11070199
J. L. Cano-Botero, Y. Ospina-Balvuena, J. A. Gutiérrez-Cifuentes, and E. Ríos-Vásquez, “Hidrodestilación asistida por microondas de aceite esencial de Curcuma longa (rizomas): optimización mediante superficie de respuesta,” Rev. Investig. Desarro. Innov., vol. 13, no. 1, pp. 185-200, Feb. 2023. https://repositorio.uptc.edu.co/handle/001/10409
T. H. Tran et al., “Effect of microwaves energy on volatile compounds in Pepper (Piper nigrum L.) leaves essential oil,” IOP Conf. Ser. Mater. Sci. Eng., vol. 736, no. 3, p. 032013, Mar. 2020. https://doi.org/10.1088/1757-899X/736/3/032013
A. Filly, X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, and F. Chemat, “Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale,” Food Chem., vol. 150, pp. 193-198, May. 2014. https://doi.org/10.1016/j.foodchem.2013.10.139
M. H. L. Da Silva, M. B. Das G. B. Zoghbi, E. H. A. Andrade, and J. G. S. Â Maia, “The essential oils of Peperomia pellucida Kunth and P. circinnata Link var. circinnata,” Flavour Frag. J., vol. 14, no. 5, pp. 312-314, Sep-Oct. 1999. https://www.researchgate.net/publication/240326764_The_essential_oils_ofPeperomia_pellucida_Kunth_andP_circinnata_Link_varcircinnata
P. N. B. de Lira, J. K. R. da Silva, E. H. A. Andrade, P. J. C. Sousa, N. N. S. Silva, and J. G. S. Maia, “Essential Oil Composition of Three Peperomia Species from the Amazon, Brazil,” NPC Nat. Prod. Commun., vol. 4, no. 3, pp. 427-430, Mar. 2009. https://doi.org/10.1177/1934578X0900400323
E. Valarezo et al., “Study of the Chemical Composition and Biological Activity of the Essential Oil from Congona (Peperomia inaequalifolia Ruiz and Pav.),” Plants, vol. 12, no. 7, p. 1504, Apr. 2023. https://doi.org/10.3390/plants12071504
E. Dorla et al., “Insecticidal Activity of the Leaf Essential Oil of Peperomia borbonensis Miq. (Piperaceae) and Its Major Components against the Melon Fly Bactrocera cucurbitae (Diptera: Tephritidae),” Chem. Biodivers., vol. 14, no. 6, p. e1600493, Mar. 2017. https://doi.org/10.1002/cbdv.201600493
H. Minh Nguyen et al., “Essential Oil from Vietnamese Peperomia leptostachya Hook. & Arn. (Piperaceae): Chemical Composition, Antioxidant, Anti-Inflammatory, Cytotoxic Activities, and In Silico Analysis,” Molecules, vol. 29, no. 12, p. 2808, Jun. 2024. https://doi.org/10.3390/molecules29122808
Z. Shafi et al., “Exploring the food safety and preservation landscape of Myristica fragrans (L.) against foodborne pathogen: A review of current knowledge,” J. Agric. Food Res., vol. 19, p. 101639, Mar. 2025. https://doi.org/10.1016/j.jafr.2025.101639
M. E. Götz, B. Sachse, B. Schäfer, and A. Eisenreich, “Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food,” Foods, vol. 11, no. 13, p. 1988, Jul. 2022. https://doi.org/10.3390/foods11131988
E. Frederico Seneme, D. C. dos Santos, E. M. Rodrigues Silva, Y. E. Moreira Franco, and G. Barbarini Longato, “Pharmacological and therapeutic potential of myristicin: A literature review,” Molecules, vol. 26, no. 19, p. 5914, Sep. 2021. https://doi.org/10.3390/molecules26195914
E. Frederico Seneme, D. C. dos Santos, C. A. de Lima, Í. A. Maccari Zelioli, J. Mozer Sciani, and G. Barbarini Longato, “Effects of Myristicin in Association with Chemotherapies on the Reversal of the Multidrug Resistance (MDR) Mechanism in Cancer,” Pharmaceuticals, vol. 15, no. 10, p. 1233, Oct. 2022. https://doi.org/10.3390/ph15101233
National Toxicology Program, “15th Report on Carcinogens,” U.S. Department of Health and Human Services, 2021. [Online]. Available: https://ntp.niehs.nih.gov/research/assessments/cancer/roc
Junta Internacional de Fiscalización de Estupefacientes, “Precursores, sustancias químicas y equipo frecuentemente utilizados para la fabricación ilícita de estupefacientes y sustancias sicotrópicas 2024,” Naciones Unidas, 2024. Accessed: Jul. 24, 2025. [Online]. Available: https://www.incb.org/documents/PRECURSORS/TECHNICAL_REPORTS/2024/S/PRE_Report_S.pdf
L. Bader Eddin et al., “Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol,” Nutrients, vol. 14, no. 7, p. 1370, Mar. 2022. https://doi.org/10.3390/nu14071370
E. Ramazani, M. Akaberi, S. Ahmad Emami, and Z. Tayarani-Najaran, “Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms,” Life Sci., vol. 304, p. 120728, Sep. 2022. https://doi.org/10.1016/j.lfs.2022.120728
Smith R. L. et al., “GRAS Flavoring Substances 24 The 24th publication by the FEMA expert Panel presents safety and usage data on 236 new generally recognized as safe flavoring ingredients,” Food Technol., vol. 63, no. 6, pp. 46-105, 2009. https://www.femaflavor.org/publications/gras-publications/gras-24
L. J. Marnett et al., “GRASr2 Evaluation of Aliphatic Acyclic and Alicyclic Terpenoid Tertiary Alcohols and Structurally Related Substances Used as Flavoring Ingredients,” J. Food Sci., vol. 79, no. 4, pp. 428-441, Apr. 2014. https://doi.org/10.1111/1750-3841.12407
Downloads
Copyright (c) 2025 TecnoLógicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
| Article metrics | |
|---|---|
| Abstract views | |
| Galley vies | |
| PDF Views | |
| HTML views | |
| Other views | |





