Thermal behavior evaluation of solar dryers in a passive regime

  • Luis E. Mealla-Sánchez Universidad Autónoma del Caribe
  • Julián D. Morales-Olaciregui Universidad Autónoma del Caribe
Keywords: Renewable energy, solar dryer, passive regime, efficiency, computer simulation

Abstract

This article presents the evaluation of the thermal behavior of three solar dryers in a passive flow regime designed for the environmental conditions of the Colombian Caribbean Coast. Field experiments were conducted to obtain thermal efficiency results that were compared with those supplied by a computer simulation. The latter was based on energy balances in each component of the dryers. Atmospheric data of the location on the days the field tests were carried out were used as input for a simulation created using specific open-source software. Consistency is observed between the results from the simulation and those obtained from direct measurement.

Author Biographies

Luis E. Mealla-Sánchez, Universidad Autónoma del Caribe

MSc. en Energías Renovables, Facultad de Ingeniería, Programa de Ingeniería Mecánica, Departamento de Ciencias Básicas, Universidad Autónoma del Caribe, Barranquilla-Colombia

Julián D. Morales-Olaciregui, Universidad Autónoma del Caribe

Ingeniero Mecánico, Facultad de Ingeniería, Universidad Autónoma del Caribe, Barranquilla-Colombia

References

V. Belessiotis and E. Delyannis, “Solar drying,” Sol. Energy, vol. 85, no. 8, pp. 1665–1691, Aug. 2011.

K. Kröll and W. Kast, Trocknen und Trockner in der Produktion. Berlin, 1989.

O. V Ekechukwu and B. Norton, “Review of solar-energy drying systems III: low temperature air-heating solar collectors for crop drying applications,” Energy Convers. Manag., vol. 40, no. 6, pp. 657–667, 1999.

G. Duran, M. Condori, R. Echazú, and G. D. Russo, “Secador solar híbrido para la producción continúa a escala industrial de pimiento para pimentón,” in IV Conferencia LatinoAmericana de Energía Solar (IV ISES_CLA), 2010, pp. 1–15.

Ma. Leon, S.C Bhattacharya, and S. Kumar, “A comprehensive procedure for performance evaluation of solar food dryers,” Renew. Sustain. Energy Rev., vol. 6, no. 4, pp. 367–393, Aug. 2002.

M. S. Sodha and R. Chandra, “Solar drying systems and their testing procedures: A review,” Energy Convers. Manag., vol. 35, no. 3, pp. 219–267, Mar. 1994.

G. M. Tokar, “Food drying in Bangladesh,” Dhaka: Agro-based industries and technology Project (ATDP), 1997.

C. Tiris, M. Tiris, and I. Dincer, “Investigation of the thermal efficiencies of a solar dryer,” Energy Convers. Manag., vol. 36, no. 3, pp. 205–212, Mar. 1995.

M. A. Karim and M. N. A. Hawlader, “Development of solar air collectors for drying applications,” Energy Convers. Manag., vol. 45, no. 3, pp. 329–344, Feb. 2004.

R. American Society of Heating and Air-Conditioning Engineers, Methods of testing to determine thermal performance of solar collectors. New York: ASHRAE, 1978.

J. A. Duffie, W. A. Beckman, and W. M. Worek, “Solar Engineering of Thermal Processes,” J. Sol. Energy Eng., vol. 116, no. 1, p. 67, 1994.

S. Maiti, P. Patel, K. Vyas, K. Eswaran, and P. K. Ghosh, “Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India,” Sol. Energy, vol. 85, no. 11, pp. 2686–2696, Nov. 2011.

P. Gbaha, H. Yobouet Andoh, J. Kouassi Saraka, B. Kaménan Koua, and S. Touré, “Experimental investigation of a solar dryer with natural convective heat flow,” Renew. Energy, vol. 32, no. 11, pp. 1817–1829, Sep. 2007.

W. H. McAdams, "Heat Transmission", Mcgraw, 3rd ed., no. 4. 1954.

G. Duran, M. Condorí, and F. Altobelli, “Simulation of a passive solar dryer to charqui production using temperature and pressure networks,” Sol. Energy, vol. 119, pp. 310–318, 2015.

[16] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. John Wiley & Sons, Inc., 2007.

M. Condorí, L. Mealla, and L. Saravia, “Estudio y modelización de un nuevo diseño de chimenea solar,” Av. en Energía Renov. y Medio Ambient., vol. 5, pp. 19–24, 2001.

A. Bejan, Convection Heat Transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013.

D. Alia, L. R. Saravia, and D. Saravia, “Simusol: simulating thermal systems using sceptre and DIA,” J. Free Softw. Free Knowl., vol. 1, pp. 30–34, 2012.

J.P. Holman, Experimental Methods for Engineers, 8th ed. New York: McGraw-Hill Education, 2011.

How to Cite
[1]
L. E. Mealla-Sánchez and J. D. Morales-Olaciregui, “Thermal behavior evaluation of solar dryers in a passive regime”, TecnoL., vol. 21, no. 41, pp. 29–44, Jan. 2018.

Downloads

Download data is not yet available.
Published
2018-01-15
Section
Research Papers

Altmetric

Some similar items: