Metodologías empleadas para la producción de concreto permeable usando parcialmente materiales reciclados como agregados: una revisión literaria

Palabras clave: Concreto permeable, ensayos de laboratorio, materiales residuales, permeabilidad, porosidad

Resumen

El objetivo de la presente revisión fue recopilar y discutir literatura científica sobre metodologías empleadas para la producción y elaboración del concreto innovador “concreto permeable”, como alternativa de diseño en pavimentos, con el remplazo parcial de agregado grueso por agregados reciclados, como látex de caucho al 5 % y 8 % por peso de cemento, ceniza volante entre el 0 % y el 70 % por volumen del cemento, y fibra de carbono al 0.27 % y 0.4 % por peso de agregado grueso. Esta revisión de literatura implicó seleccionar las publicaciones más relevantes, para los períodos del 2015 al 2021 en bases de datos indexadas Scopus, Scielo, ScienceDirect, y Latindex; enfocándose en múltiples parámetros como: “materiales residuales, coeficiente de permeabilidad, concreto permeable, grado de porosidad y ensayos de laboratorio para el concreto permeable”. Los resultados muestran que la resistencia a la compresión varía entre 0.5 MPa y 97.3 MPa, resistencia a la tracción entre 1.6 MPa y 5.29 MPa y la permeabilidad entre 4.63 mm/s y 10.2 mm/s, donde el porcentaje idóneo del uso de ceniza volante para la obtención óptima de concreto permeable es hasta el 20 %, que, excediendo este porcentaje, afecta negativamente sus propiedades mecánicas. En conclusión, el “concreto permeable” se sitúa dentro de los rangos establecidos según normativa: 17.5 MPa, 2.6 MPa, 6.1 mm/s, respectivamente; por ende, adquiere un valor sustancial, contribuyendo con la mejora del nivel microestructural y mayor durabilidad, siendo ventajoso y útil en los tiempos modernos.

Biografía del autor/a

Jhon Emanuel Ayala-López, Universidad Señor de Sipán, Perú

Universidad Señor de Sipán, Lambayeque - Perú, alopezjhon@crece.uss.edu.pe

Elmer Gil-Ahumada, Universidad Señor de Sipán, Perú

Universidad Señor de Sipán, Lambayeque - Perú, gahumadaelmer@crece.uss.edu.pe

Rosario Dolores Cornejo-Ramos, Universidad Señor de Sipán, Perú

Universidad Señor de Sipán, Lambayeque - Perú, cramosrosar@crece.uss.edu.pe

Sócrates Pedro Muñoz-Pérez*, Universidad Señor de Sipan, Perú

Universidad Señor de Sipán, Lambayeque - Perú, msocrates@crece.uss.edu.pe

Referencias bibliográficas

F. H. M. Ahmad; M. H. Jamal; A. R. M. Sam; N. F. Haron, “Eco-composite Porous Concrete Drainage Systems: An Alternative Mitigation for Urban Flood Management”, en Proceedingsofthe International Conferenceon Civil, Offshore and Environmental Engineering, Kuching, 2021, pp. 195–201. https://doi.org/10.1007/978-981-33-6311-3_23

R. Zhong; Z. Leng; C. Poon, “Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review”, Constr. Build. Mater, vol. 183, pp. 544-553, Sep. 2018. https://doi.org/10.1016/j.conbuildmat.2018.06.131

S. Cabello; L. Campuzano; J. Espinoza; C. Sánchez, “Concreto poroso: Constitución, Variables influyentes y Protocolos para su caracterización”, Cumbres, vol. 1, no. 1, pp. 64-69, Jun. 2015. https://doi.org/10.48190/cumbres.v1n1a9

G. L. Vieira; J. Z. Schiavon; P. M. Borges; S. R. da Silva; J. J. de Oliveira Andrade, “influence of recycled aggregate replacement and fly ash content in performance of pervious concrete mixtures,” J. Clean. Prod., vol. 271, p. 122665, Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122665

G. F. B. Sandoval; I. Galobardes; R. S. Teixeira; B. M. Toralles, “Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes”, Case Stud. Constr. Mater., vol. 7, pp. 317–328, Dec. 2017. https://doi.org/10.1016/j.cscm.2017.09.001

R. Pieralisi; G. F. B. Sandoval; L. Segura-Castillo; M. N. C. Barbosa; S. T. Assunção, “Contribuição Para O Desenvolvimento De Uma Metodologia De Dosagem Para Concreto Permeável Baseada No Desempenho,”, J. Urban Technol. Sustain., vol. 3, no. 1, pp. 18–27, Dec. 2020. https://doi.org/10.47842/juts.v3i1.19

A. K. Chandrappa; K. P. Biligiri, “Pervious concrete as a sustainable pavement material – Research findings and future prospects: A state-of-the-art review”, Constr. Build. Mater., vol. 111, pp. 262–274, May 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.054

A. Bonicelli; L. R. Pianeta, “Performance and Applications of Pervious Concrete Pavement Material as an Overlay on Existent Concrete Slabs”, IOP Conf. Ser. Mater. Sci. Eng., vol. 471, no. 3, p. 032061, Feb. 2019. https://doi.org/10.1088/1757-899X/471/3/032061

S. Chen; Y. Zhao; Y. Bie, “The prediction analysis of properties of recycled aggregate permeable concrete based on back-propagation neural network”, J. Clean. Prod., vol. 276, p. 124187, Dec. 2020. https://doi.org/10.1016/j.jclepro.2020.124187

E. Khankhaje; M. Rafieizonooz; M. R. Salim; J. Mirza, Salmiati; M. W. Hussin, “Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement”, Int. J. Pavement Res. Technol., vol. 10, no. 5, pp. 383–392, Sep. 2017. https://doi.org/10.1016/j.ijprt.2017.05.003

Q. Zhang; X. Feng; X. Chen; K. Lu, “Mix design for recycled aggregate pervious concrete based on response surface methodology”, Constr. Build. Mater, vol. 259, pp. 1-11, Oct. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119776

D. Zuluaga-Castrillón; J. F. Hernández-Ruiz; F. Vargas-Galvis; M. E. López-Gómez; C. C. Palacio-Espinosa, “Dynamic drilling as an alternative method for determining the mechanical behavior of refractories materials”, TecnoLógicas, vol. 20, no. 39, pp. 99-114, May 2017. https://doi.org/10.22430/22565337.694

C. A. Martínez; J. F. Díaz; R. Duque, “Formwork Layout for Walls Using Modular Formworks”, TecnoLógicas, vol. 22, pp. 1-18, Dic. 2019. https://doi.org/10.22430/22565337.1509

Z. Yu et al., “Performance of permeable pavement systems on stormwater permeability and pollutant removal,” Environ. Sci. Pollut. Res., vol. 28, no. 22, pp. 28571–28584, Feb. 2021. https://doi.org/10.1007/s11356-021-12525-5

K. Dall Bello De Souza Risson; G. F. B. Sandoval; F. S. Cofani Pinto; M. Camargo; A. Campos De Moura; B. Martins Toralles, “Molding procedure for pervious concrete specimens by density control”, Case Stud. Constr. Mater., vol. 15, p. e00619, Dec. 2021. https://doi.org/10.1016/j.cscm.2021.e00619

R. Pieralisi; S. H. P. Cavalaro; A. Aguado, “Advanced numerical assessment of the permeability of pervious concrete”, Cem. Concr. Res., vol. 102, pp. 149–160, Dec. 2017. https://doi.org/10.1016/j.cemconres.2017.09.009

E. Khankhaje et al., “Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell”, Appl. Acoust., vol. 122, pp. 113–120, Jul. 2017. https://doi.org/10.1016/j.apacoust.2017.02.014

H. A. Rondón-Quintana; C. F. Urazán-Bonells; S. B. Chaves-Pabón, “Influence of compaction temperature on the resistance of a stabilized granular material with asphalt cement”, TecnoLógicas, vol. 18, no. 34, p.p, 51-62, Jan. 2015. https://doi.org/10.22430/22565337.218

S. Zhang; P. He; L. Niu, “Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick”, J. Clean. Prod., vol. 268, pp. 121690, Sep. 2020. https://doi.org/10.1016/j.jclepro.2020.121690

B. Liu; J. Shi; M. Sun; Z. He, H. Xu; J. Tan, “Mechanical and permeability properties of polymer-modified concrete using hydrophobic agent”, J. Build. Eng., vol. 31, p. 101337, Sep. 2020. https://doi.org/10.1016/j.jobe.2020.101337

W. Zhao; Y. Zhang; L. Li, W. Su; G. Ma; B. Li, “Thermal characteristics of porous concrete in a hydronic road heating system”, Appl. Therm. Eng., vol. 182, p. 116074, Jan. 2021. https://doi.org/10.1016/j.applthermaleng.2020.116074

R. J. Mikami; P. Kruger; E. Pereira; A. C. B. Kummer; M. M. R. Döll, “Influência do teor de cerâmica vermelha do agregado reciclado nas propriedades do concreto permeável”, Matéria (Rio Janeiro), vol. 23, no. 3, Oct. 2018. https://doi.org/10.1590/S1517-707620180003.0497

Y. Zhang; H. Li; A. Abdelhady; J. Yang; H. Wang, “Effects of specimen shape and size on the permeability and mechanical properties of porous concrete”, Constr. Build. Mater., vol. 266, Part B, p. 121074, Jan. 2021.https://doi.org/10.1016/j.conbuildmat.2020.121074

F. Yu; D. Sun; J. Wang; M. Hu, “Influence of aggregate size on compressive strength of pervious concrete”, Constr. Build. Mater., vol. 209, pp. 463–475, Jun. 2019. https://doi.org/10.1016/j.conbuildmat.2019.03.140

O. AlShareedah; M. M. Haider; S. Nassiri, “Correlating Laboratory and Field Compaction Levels to Achieve Optimum In Situ Mechanical Properties for Pervious Concrete Pavements”, J. Mater. Civ. Eng., vol. 32, no. 10, p. 04020278, Oct. 2020. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003361

R. Pieralisi; S. H. P. Cavalaro; A. Aguado, “Discrete element modelling of mechanical behaviour of pervious concrete”, Cem. Concr. Compos., vol. 119, p. 104005, May 2021. https://www.sciencedirect.com/science/article/pii/S0958946521000743?dgcid=rss_sd_all

B. S. Mohammed; M. S. Liew; W. S. Alaloul; V. C. Khed; C. Y. Hoong; M. Adamu, “Properties of nano-silica modified pervious concrete”, Case Stud. Constr. Mater., vol. 8, pp. 409–422, Jun. 2018. https://doi.org/10.1016/j.cscm.2018.03.009

W. M. P. de Araújo; F. P. Avelino; M. de S. Picanço; A. N. Macêdo, “Study of the physical and mechanical properties of permeable concrete with the addition of TiO 2 for the treatment of sewage”, Rev. IBRACON Estruturas e Mater., vol. 13, no. 5, p.p. 1-16, Mar. 2020. https://doi.org/10.1590/S1983-41952020000500014

L. M. Tavares; C. S. Kazmierczak, “The influence of recycled concrete aggregates in pervious concrete”, Rev. IBRACON Estruturas e Mate., vol. 9, no. 1, pp. 75 - 90, Feb. 2016. https://doi.org/10.1590/S1983-41952016000100006

B. Jain; V. Jain; G. Sancheti, “A study on workability of silica fume and iron dust added concrete”, IOP Conf. Ser. Earth Environ. Sci., vol. 796, no. 1, p. 012072, Aug. 2021. https://doi.org/10.1088/1755-1315/796/1/012072

Y. Tan; Y. Zhu; H. Xiao, “Evaluation of the Hydraulic, Physical, and Mechanical Properties of Pervious Concrete Using Iron Tailings as Coarse Aggregates”, Appl. Sci., vol. 10, no. 8, p. 2691, Apr. 2020. https://doi.org/10.3390/app10082691

J. Chen; R. Chu; H. Wang; L. Zhang; X. Chen; Y. Du, “Alleviating urban heat island effect using high-conductivity permeable concrete pavement”, J. Clean. Prod., vol. 237, p. 117722, Nov. 2019. https://doi.org/10.1016/j.jclepro.2019.117722

D. Singh; S. P. Singh, “Influence of recycled concrete aggregates and blended cements on the mechanical properties of pervious concrete”, Innov. Infrastruct. Solut., vol. 5, no. 3, p. 66, Dec. 2020. https://doi.org/10.1007/s41062-020-00314-x

X. Cai; K. Wu; W. Huang; J. Yu; H. Yu, “Application of recycled concrete aggregates and crushed bricks on permeable concrete road base”, Road Mater. Pavement Des., vol. 22, no. 10, pp. 2181–2196, Oct. 2021. https://doi.org/10.1080/14680629.2020.1742193

X. Yao; H. Liao; H. Dong; F. Yang; Y. Yao; W. Wang, “Influence of water repellent on the property of solid waste based sulfoaluminate cement paste and its application in lightweight porous concrete”, Constr. Build. Mater., vol. 282, pp. 122731, May 2021. https://doi.org/10.1016/j.conbuildmat.2021.122731

E. Güneyisi; M. Gesoğlu; Q. Kareem; S. İpek, “Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete”, Mater. Struct., vol. 49, no. 1–2, pp. 521–536, Jan. 2016. https://doi.org/10.1617/s11527-014-0517-y

F. Wen; K. Zhang; H. Fan; S. Zhai; F. Liu, “Physical Properties and Seepage Characteristics of Optimized Fiber-Reinforced Permeable Concrete”, J. Mater. Civ. Eng., vol. 33, no. 5, p. 04021093, May 2021. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003590

H. Wu; Z. Liu; B. Sun; J. Yin, “Experimental investigation on freeze–thaw durability of Portland cement pervious concrete (PCPC)”, Constr. Build. Mater., vol. 117, pp. 63–71, Aug. 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.130

F. Yu; D. Sun; G. Sun; S. Ling; M. Hu; J. Ma, “A modified mix design method for pervious concrete based on Mohr-Coulomb failure criterion”, Constr. Build. Mater., vol. 269, pp. 121801, Feb. 2021. https://doi.org/10.1016/j.conbuildmat.2020.121801

A. Schackow; C. Effting; V. G. Barros; I. R. Gomes; V. S. da Costa Neto; M. S. Delandréa, “Permeable concrete plates with wastes from the paper industry: Reduction of surface flow and possible applications”, Constr. Build. Mater., vol. 250, p. 118896, Jul. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118896

M. Pereira; J. Carbajo; L. Godinho; J. Ramis; P. Amado-Mendes, “Improving the sound absorption behaviour of porous concrete using embedded resonant structures”, J. Build. Eng., vol. 35, p. 102015, Mar. 2021. https://doi.org/10.1016/j.jobe.2020.102015

Z. Wang; D. Zou; T. Liu; A. Zhou; M. Shen, “A novel method to predict the mesostructure and performance of pervious concrete”, Constr. Build. Mater., vol. 263, p. 120117, Dec. 2020. https://doi.org/10.1016/j.conbuildmat.2020.120117

E. J. Elizondo-Martinez; V. C. Andrés-Valeri; J. Rodriguez-Hernandez; D. Castro-Fresno, “A New Design Methodology for Improving Porous Concrete Properties to Achieve Multifunctional and Sustainable Pavements”, En Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE). Switzerland: Springer, 2020, pp. 491–499. https://link.springer.com/content/pdf/10.1007%2F978-3-030-29779-4.pdf

G. F. B. Sandoval; I. Galobardes; A. C. De Moura; B. M. Toralles, “Hydraulic behavior variation of pervious concrete due to clogging”, Case Stud. Constr. Mater., vol. 13, p. e00354, Dec. 2020. https://doi.org/10.1016/j.cscm.2020.e00354

E. J. Elizondo-Martínez; V. C. Andrés-Valeri; L. Juli-Gándara; J. Rodriguez-Hernandez, “Multi-criteria optimum mixture design of porous concrete pavement surface layers”, Int. J. Pavement Eng., pp. 1–10, May 2020. https://www.tandfonline.com/doi/epub/10.1080/10298436.2020.1768254?needAccess=true

A. K. Chandrappa; K. P. Biligiri, “Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach,” Constr. Build. Mater., vol. 123, pp. 627–637, Oct. 2016. https://doi.org/10.1016/j.conbuildmat.2016.07.035

Y. Zaetang; V. Sata; A. Wongsa; P. Chindaprasirt, “Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate”, Constr. Build. Mater., vol. 111, pp. 15–21, May 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.060

T. M. Borhan; R. J. Al Karawi, “Experimental investigations on polymer modified pervious concrete”, Case Stud. Constr. Mater., vol. 12, p. e00335, Jun. 2020. https://doi.org/10.1016/j.cscm.2020.e00335

O. AlShareedah; S. Nassiri; Z. Chen; K. Englund; H. Li; O. Fakron, “Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement”, Case Stud. Constr. Mater., vol. 10, p. e00231, Jun. 2019. https://doi.org/10.1016/j.cscm.2019.e00231

D. H. Nguyen; M. Boutouil; N. Sebaibi; F. Baraud; L. Leleyter, “Durability of pervious concrete using crushed seashells”, Constr. Build. Mater., vol. 135, pp. 137–150, Mar. 2017. https://doi.org/10.1016/j.conbuildmat.2016.12.219

J. Liu; Y. Li , “Runoff purification effects of permeable concrete modified by diatomite and zeolite powder”, Advances in Materials Science and Engineering, vol. 2020, pp. 1-11, Ago. 2020. https://doi.org/10.1155/2020/1081346

C. Gaedicke; A. Marines; L. Mata; F. Miankodila, “Efecto del uso de materiales reciclados y métodos de compactación en las propiedades mecánicas e índice de reflectancia solar del hormigón permeable”, Rev. Ing. construcción, vol. 30, no. 3, pp. 159–167, Dec. 2015. http://dx.doi.org/10.4067/S0718-50732015000300001

M. R. Pinto; C. Carrasco; K. Caballero, “Estudio experimental del concreto poroso con la incorporación de distintas granulometrías”, I+D Tecnológico, vol. 14, no. 2, pp. 57–65, Dec. 2018. https://doi.org/10.33412/idt.v14.2.2074

R. J. Mikami; A. C. B. Kummer; M. M. R. Döll, “Leaching of Pervious Concrete Produced Using Mixed Recycled Aggregates”, Brazilian Arch. Biol. Technol., vol. 63, 2020. https://doi.org/10.1590/1678-4324-2020180408

B. M. Taheri; A. M. Ramezanianpour; S. Sabokpa; M. Gapele, “Experimental evaluation of freeze-thaw durability of pervious concrete”, J. Build. Eng., vol. 33, p. 101617, Jan. 2021. https://doi.org/10.1016/j.jobe.2020.101617

G. F. Barreto Sandoval; I. Galobardes Reyes; N. Schwantes-Cezario; A. Campos Moura; B. Martins Toralles, “Correlation between Permeability and Porosity for Pervious Concrete (PC)”, DYNA, vol. 86, no. 209, pp. 151–159, Apr. 2019. https://doi.org/10.15446/dyna.v86n209.77613

V. A. Ulloa-Mayorga; M. A. Uribe-Garcés; D. P. Paz-Gómez; Y. A. Alvarado; B. Torres; I. Gasch, “Performance of pervious concrete containing combined recycled aggregates”, Ing. e Investig., vol. 38, no. 2, pp. 34–41, Aug 2018. http://dx.doi.org/10.15446/ing.investig.v38n2.67491

A. F. H. Sherwani; R. Faraj; K. H. Younis; A. Daraei,, “Strength, abrasion resistance and permeability of artificial fly-ash aggregate pervious concrete”, Case Stud. Constr. Mater., vol. 14, pp. 1-15, Jun. 2021. https://doi.org/10.1016/j.cscm.2021.e00502

E.-J. Elizondo-Martinez; P. Tataranni; J. Rodriguez-Hernandez; D. Castro-Fresno, “Physical and Mechanical Characterization of Sustainable and Innovative Porous Concrete for Urban Pavements Containing Metakaolin”, Sustainability, vol. 12, no. 10, p. 4243, May 2020. https://doi.org/10.3390/su12104243

G. H. Faisal; A. J. Jaeel; A. L. Gasham, “BOD and COD reduction using porous concrete pavements”, Case Studies in Construction Materials, vol. 13, pp. 1-16, Dic. 2020. https://doi.org/10.1016/j.cscm.2020.e00396

J. Zhao et al., “Comparison of Field Infiltration Test Methods for Permeable Pavement: Towards an Easy and Accurate Method”, CLEAN – Soil, Air, Water, vol. 47, no. 8, p. 1900174, Aug. 2019. https://doi.org/10.1002/clen.201900174

M. N. Marinho; A. P. Coutinho; S. M. dos Santos Neto; C. A. Casagrande; G. T. L. Santos; A. M. P. Carneiro, “Mathematical modeling of the infiltration in a permeable pavement on the field scale”, RBRH, vol. 25, 2020. https://doi.org/10.1590/2318-0331.252020200052

E. Lee; J. Ahn; H.-S. Shin, “Evaluation of surface infiltration rate of permeable block pavements using single ring infiltrometer”, Desalin. WATER Treat., vol. 104, pp. 286–293, 2018. https://doi.org/10.5004/dwt.2018.21818

B. W. Ono; J. T. Balbo; A. Cargnin, “Análise da capacidade de infiltração em pavimento permeável de bloco de concreto unidirecionalmente articulado”, Transportes, vol. 25, no. 3, p. 90-101, Oct. 2017. https://doi.org/10.14295/transportes.v25i3.1314

W. D. Martin; B. J. Putman, “Comparison of methods for measuring porosity of porous paving mixtures”, Constr. Build. Mater., vol. 125, pp. 299–305, Oct. 2016. https://doi.org/10.1016/j.conbuildmat.2016.08.038

N. A. Brake; H. Allahdadi; F. Adam, “Flexural strength and fracture size effects of pervious concrete”, Constr. Build. Mater., vol. 113, pp. 536–543, Jun. 2016. https://doi.org/10.1016/j.conbuildmat.2016.03.045

A. Torres; J. Hu; A. Ramos, “The effect of the cementitious paste thickness on the performance of pervious concrete”, Constr. Build. Mater., vol. 95, pp. 850–859, Oct. 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.187

K. S. B. Prasad; S. Lahari Anisha; N. Pavan Kumar, “Experiment on Mechanical Properties of Pervious Concrete”, Int. J. Recent Technol. Eng., vol. 8, no. 2S8, pp. 1004–1007, Aug. 2019. https://doi.org/10.35940/ijrte.B1192.0882S819

R. Pieralisi; S. H. P. Cavalaro; A. Aguado, “Discrete element modelling of the fresh state behavior of pervious concrete”, Cem. Concr. Res., vol. 90, pp. 6–18, Dec. 2016. https://doi.org/10.1016/j.cemconres.2016.09.010

F. B. Pereira da Costa; L. M. Haselbach; L. C. P. da Silva Filho, “Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture”, Constr. Build. Mater, vol. 268, pp. 1-12, 25 Jan. 2021. https://doi.org/10.1016/j.conbuildmat.2020.121084

S. T. Martins Filho; E. M. Bosquesi; J. R. Fabro; R. Pieralisi, “Characterization of pervious concrete focusing on non-destructive testing”, Rev. IBRACON Estruturas e Mater., vol. 13, no. 3, p. 483 – 500, Jun. 2020. https://doi.org/10.1590/S1983-41952020000300003

M. Kovác; A. Sicáková, “Pervious Concrete as an Environmental Solution for Pavements: Focus on Key Properties”, Environments, vol. 5, no. 1, pp. 1-9, Jan. 2018. https://doi.org/10.3390/environments5010011

C.-W. Tang; C.-K. Cheng; C.-Y. Tsai, “Mix Design and Mechanical Properties of High-Performance Pervious Concrete”, Materials, vol. 12, no. 16, p. 2577, Aug. 2019. https://doi.org/10.3390/ma12162577

P. R. Guerra Chayña; C. E. Guerra Ramos, “Design of a rigid permeable pavement as a sustainable urban drainage system”, Fides Et Ratio, vol. 20, no. 20, pp. 121-140, Sep. 2020. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2071-081X2020000200008&lng=es&tlng=

R. R. Singh; A. J. S. Sidhu, “Fracture and fatigue study of pervious concrete with 15–20% void ratio”, Sādhanā, vol. 45, no. 1, p. 151, Jun. 2020. https://doi.org/10.1007/s12046-020-01374-6

Z. Yan; L. Li; M. Chen; L. Lu; P. Zhao; X. Cheng, “The rheology of a cement paste and the frost resistance of a permeable concrete with an emulsified asphalt modified by a silane coupling agent”, Ceramics - Silikáty, vol. 64, no. 2, pp. 125-134, Jan. 2020. https://doi.org/10.13168/cs.2020.0001

S. P. Yap; P. Z. C. Chen; Y. Goh; H. A. Ibrahim; K. H. Mo; C. W. Yuen, “Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates”, J. Clean. Prod., vol. 181, pp. 155–165, Apr. 2018. https://doi.org/10.1016/j.jclepro.2018.01.205

J. J. Randrianarimanana, N. Sebaibi y M. Boutouil, “Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products”, Int. J. Civil, Environ. Struct. Constr. Archit. Eng., vol. 11, no. 8, pp. 1059-1068, Ago. 2017. https://www.researchgate.net/publication/319329224_Laboratory_Analysis_of_Stormwater_Runoff_Hydraulic_and_Pollutant_Removal_Performance_of_Pervious_Concrete_Based_on_Seashell_By-Products

J. L. Z. Tarqui; M. de F. Carvalho; C. M. L. dos Santos; J. E. dos Santos, “Avaliação do escoamento superficial de águas pluviais em pavimento de blocos de solo-cimento”, Eng. Sanit. e Ambient., vol. 24, no. 2, pp. 403–410, Apr. 2019. https://doi.org/10.1590/S1413-41522019153148

Y.-Y. Cheng; S.-L. Lo; C.-C. Ho; J.-Y. Lin; S. L. Yu, “Field Testing of Porous Pavement Performance on Runoff and Temperature Control in Taipei City”, Water, vol. 11, no. 12, p. 2635, Dec. 2019. https://doi.org/10.3390/w11122635

L. Moretti; P. Di Mascio; C. Fusco, “Porous Concrete for Pedestrian Pavements”, Water, vol. 11, no. 10, p. 2105, Oct. 2019. https://doi.org/10.3390/w11102105

N. Xie; M. Akin; X. Shi, “Permeable concrete pavements: A review of environmental benefits and durability”, J. Clean. Prod., vol. 210, pp. 1605–1621, Feb. 2019. https://doi.org/10.1016/j.jclepro.2018.11.134

X. Chen; H. Wang; H. Najm, G. Venkiteela; J. Hencken, “Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag”, J. Clean. Prod., vol. 237, p. 117714, Nov. 2019. https://doi.org/10.1016/j.jclepro.2019.117714

Cómo citar
[1]
J. E. . Ayala-López, E. Gil-Ahumada, R. D. . Cornejo-Ramos, y S. P. Muñoz-Pérez, «Metodologías empleadas para la producción de concreto permeable usando parcialmente materiales reciclados como agregados: una revisión literaria», TecnoL., vol. 25, n.º 53, p. e2080, mar. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-03-01
Sección
Artículos de revisión

Métricas

Crossref Cited-by logo