Determination of Uncertainty in Measuring Instruments in Electrical Engineering Programs

Keywords: Measurement Uncertainty, Measurement Errors, Engineering Education, Electric Variables, Design Methodology

Abstract

When electrical engineering students start their instrumentation and measurement course, they have previously taken calculus, physics, probability, and statistics. However, they have problems to apply the knowledge they acquired to solve problems related to electrical measurements and variables in the profession, such as water flows, solar radiation, wind speed and water levels. This paper shows how to integrate all the concepts involved in the process to calculate measurement uncertainty in order to improve the way the results of measurements and/or error determination processes are described. For that purpose, this study presents an applied exercise and a methodological process by means of an example, where the value of a resistance is determined taking into account the data of voltage and current measurements and using few data. The objective is to focus the process on estimating Type A and Type B uncertainty and the factors that affect the measurement processes, such as uncertainty due to random variations of the measured signals, instrument defects, imprecision of the instruments, or their resolution. During the calculation of uncertainty proposed here, students use the probabilistic knowledge they have acquired after they determined the value of the uncertainty U from the combined uncertainty u

Author Biographies

Álvaro Espinel-Ortega, Universidad Distrital Francisco José de Caldas, Colombia

PhD. in Software Engineering, Engineering Doctorate Program, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia, aespinel@udistrital.edu.co

Adriana Vega-E*, Universidad Distrital Francisco Jose de Caldas, Colombia

PhD. in Engineering, Electrical Engineering Program, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia, avegae@udistrital.edu.co

References

G. López and S. Acuña, “Aprendizaje cooperativo en el aula,” Inventio, vol. 7, no. 14, pp. 29–38, Apr. 2011.

R. R. Yager and J. P. Espada, “New Advances in the Internet of Things,” 1st ed., Jordán, Ed. Springer International Publishing, 2018.

E. J. Hernández-Leal, N. D. Duque-Méndez, and J. Moreno-Cadavid, “Big Data: una exploración de investigaciones, tecnologías y casos de aplicación,” TecnoLógicas, vol. 20, no. 39, pp. 15–38, May. 2017.

https://doi.org/10.22430/22565337.685

J. Botero Valencia, L. Castaño Londoño, and D. Marquez Viloria, “Trends in the Internet of Things,” TecnoLógicas, vol. 22, no. 44, pp. 1–2, Jan. 2019. https://doi.org/10.22430/22565337.1241

O. Revelo-Sánchez, C. A. Collazos-Ordóñez, and J. A. Jiménez-Toledo, “El trabajo colaborativo como estrategia didáctica para la enseñanza/aprendizaje de la programación: una revisión sistemática de literatura,” TecnoLógicas, vol. 21, no. 41, pp. 115–134. Jan. 2018. https://doi.org/10.22430/22565337.731

J. I. Cocunubo-Suárez, J. A. Parra-Valencia, and J. E. Otálora-Luna, “Propuesta para la evaluación de Entornos Virtuales de Enseñanza Aprendizaje con base en estándares de Usabilidad,” TecnoLógicas, vol. 21, no. 41, pp. 135–147. Jan. 2018. https://doi.org/10.22430/22565337.732

M. Hernández-de-Menéndez, A. Vallejo Guevara, J. C. Tudón Martínez, D. Hernández Alcántara, and R. Morales-Menendez, “Active learning in engineering education. A review of fundamentals, best practices and experiences,” Int. J. Interact. Des. Manuf., vol. 13, no. 3, pp. 909–922, Sep. 2019.

https://doi.org/10.1007/s12008-019-00557-8

A. M. Ruiz-Ortega, J. J. Gallardo-Rodríguez, E. Navarro-López, and M. del C. Cerón-García, “Project-led-education experience as a partial strategy in first years of engineering courses,” Educ. Chem. Eng., vol. 29, pp. 1–8, Oct. 2019. https://doi.org/10.1016/j.ece.2019.05.004

X. Xie, X. Li, D. Bi, Q. Zhou, S. Xie, and Y. Xie, “Measurement Uncertainty Estimation for Electromagnetism Devices and Equipment Using Extreme Fisher Information,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, pp. 1–5, Oct. 2016. https://doi.org/10.1109/TASC.2016.2610723

J. J. Cárdenas-Monsalve, A. F. Ramírez-Barrera, and E. Delgado-Trejos, “Evaluación y aplicación de la incertidumbre de medición en la determinación de las emisiones de fuentes fijas: una revisión,” TecnoLógicas, vol. 21, no. 42, pp. 231–244, May. 2018. https://doi.org/10.22430/22565337.790

H. A. Canseco, I. López, J. C. Olivares Galván, J. Jiménez, F. González and R. Escarela Pérez “Diseño y construcción de un prototipo de adquisición de datos para diagnosticar fallas de cortocircuito en transformadores,” Pist. Educ., no. 38, vol. 120, pp. 598–615, Oct. 2016.

C. G. López Calvachi, “Diseño e implementación de un prototipo de medición de consumo eléctrico inalámbrico para artículos del hogar monitoreado mediante una página web”, Tesis pregrado, Facultad de ingeniería y ciencias aplicadas, Universidad de las Américas, Quito, 2018. [En línea] Disponible en:

http://dspace.udla.edu.ec/handle/33000/8978

A. I. V. Fernández, J. T. D. las Muelas, L. A. Toribio, M. S. Pérez, R. M. Andrade, and S. S. Sánchez, Fundamentos básicos de la electricidad y magnetismo, 1st ed. Universidad Autónoma San Francisco, 2009.

I. Kestin, “Statistics in medicine,” Anaesth. Intensive Care Med., vol. 13, no. 4, pp. 181–188. Apr. 2012.

https://doi.org/10.1016/j.mpaic.2012.01.006

M. S. Muthuvalu, V. S. Asirvadam, and G. Mashadov, “Performance analysis of Arithmetic Mean method in determining peak junction temperature of semiconductor device,” Ain Shams Eng. J., vol. 6, no. 4, pp. 1203–1210. Dec. 2015. https://doi.org/10.1016/j.asej.2015.04.007

A. Rodríguez Rodríguez, R. J. Lima Pisco, M. A. Padilla Orlando, T. Y. Garcia Ponce, R. Y. Vera Loor, and J. C. Pino Tarragó, La estadística: gnosis del ser humano. Editorial Científica 3Ciencias, 2018.

https://doi.org/10.17993/CcyLl.2018.14

M. E. Gamboa, “Estadística aplicada a la investigación educativa,” Rev. Dilemas Contemp. Educ. Política y Valores, vol. 2, no. 2, pp. 1–32, Oct. 2018.

B. E. B. Carvalho and N. G. Bretas, “Gross error processing in state estimation: Comparing the residual and the error tests,” in 2017 IEEE Manchester PowerTech, Manchester, 2017, pp. 1–5.

https://doi.org/10.1109/PTC.2017.7980921

V. Witkovsky, G. Wimmer, Z. Durisova, S. Duris, and R. Palencar, “Brief overview of methods for measurement uncertainty analysis: GUM uncertainty framework, Monte Carlo method, characteristic function approach,” in 2017 11th International Conference on Measurement, Smolenice, 2017, pp. 35–38.

https://doi.org/10.23919/MEASUREMENT.2017.7983530

O. A. de Acreditación, Estadistica Procedimientos para la evaluación de la incertidumbre de la medición, 1st ed. Irma, 2018. http://materias.fi.uba.ar/6644/info/varios/errores/IRAM%2035050%202001.pdf

W. A. Schmid and R. J. L. Martínez, Guía para la expresión de la incertidumbre de la medición, 1st ed. Centro Nacional de Metrología, 2000.

E. Alnasser, “A Novel Fully Analog Null Instrument for Resistive Wheatstone Bridge With a Single Resistive Sensor,” IEEE Sens. J., vol. 18, no. 2, pp. 635–640, Jan. 2018. https://doi.org/10.1109/JSEN.2017.2777010

Joint Committee for Guides in Metrology (JCGM), “Evaluation of measurement data — Guide to the expression of uncertainty in measurement”, Guides to the expression of uncertainty in measurement, 2008. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

I. P. Pokrajac, D. Vucic, and P. Okiljevic, “Direct position determination of wideband signals: Coherent and noncoherent approach,” in 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Servia, 2013, pp. 77–80.

https://doi.org/10.1109/TELSKS.2013.6704897

How to Cite
[1]
Álvaro Espinel-Ortega and A. . Vega-E, “Determination of Uncertainty in Measuring Instruments in Electrical Engineering Programs ”, TecnoL., vol. 22, no. 46, pp. 171–183, Sep. 2019.

Downloads

Download data is not yet available.
Published
2019-09-20
Section
Research Papers

Altmetric

Crossref Cited-by logo