Optimal Hierarchical Control of Isolated Microgrids

Keywords: Hierarchical Control, Economic Dispatch, Renewable Energy Sources, Power Management, CC Microgrid

Abstract

The objective of this article is to propose a novel method that uses hierarchical control to efficiently manage power resources in an isolated Direct Current (DC) microgrid. The scope of this paper is limited to a numerical study of the components of the micro-generation system using accurate mathematical models in a commercial simulation tool. The control methodology is based on power sharing by means of a hierarchical topology including several control layers. In particular, the internal control loops that regulate the electrical variables in individual generators are at the bottom of the hierarchy. In addition, the power-sharing technique distributes power at an intermediate level, and it is complemented by a Newton-Raphson optimization algorithm at the top, which aims to minimize the cost function. The cost of the microgrid is defined in terms of investment and maintenance indices. This study analyzes the case of a low-power isolated DC microgrid that combines an array of photovoltaic panels and a battery bank. The most relevant result was the optimization of its generation cost, which was verified using simulations of the control and power circuits. In conclusion, although simple, the proposed technique achieves efficient performance in managing the power resources of this microgrid under environmental disturbances.

Author Biographies

Ricardo Alzate-Castaño*, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, ralzatec@uis.edu.co

María Alejandra Mantilla-Villalobos, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, marialem@uis.edu.co

References

J. Gowdy, “Our hunter-gatherer future: Climate change, agriculture and uncivilization”, Futures, vol. 115, p. 102488, Jan. 2020. https://doi.org/10.1016/j.futures.2019.102488

J. Pardoe; K. Vincent; D. Conway, “How do staff motivation and workplace environment affect capacity of governments to adapt to climate change in developing countries?”, Environ. Sci. Policy, vol. 90, pp. 46 – 53, Dec. 2018. https://doi.org/10.1016/j.envsci.2018.09.020

W. Krauß; S. Bremer, “The role of place-based narratives of change in climate risk governance”, Clim. Risk Manag., vol. 28, p. 100221, 2020. https://doi.org/10.1016/j.crm.2020.100221

T. Abbasi; S. Abbasi, “Decarbonization of fossil fuels as a strategy to control global warming”, Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1828-1834, May. 2011. https://doi.org/10.1016/j.rser.2010.11.049

X. Zhou; T. Guo; Y. Ma, “An overview on microgrid technology”, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 2015, pp. 76–81. https://doi.org/10.1109/ICMA.2015.7237460

A. Hirsch; Y. Parag; J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues”, Renew. Sustain. Energy Rev., vol. 90, pp. 402-411, Jul. 2018. https://doi.org/10.1016/j.rser.2018.03.040

W. Guacaneme; A. F. Rodríguez; L. M. Gómez; F. Santamaría; C. Trujillo, “Development of a small-scale residential microgrid prototype”, TecnoLogicas, vol. 21, no. 43, pp. 107-125, Sep. 2018. https://doi.org/10.22430/22565337.1065

J. D. Garzón-Hidalgo; A. J. Saavedra-Montes, “A design methodology of microgrids for non-interconnected zones of Colombia”, TecnoLogicas, vol. 20, no. 39, pp. 39-53, May 2017. https://doi.org/10.22430/22565337.687

D. López-García; A. Arango-Manrique; S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm”, TecnoLogicas, vol. 21, no. 42, pp. 13-30, May 2018. https://doi.org/10.22430/22565337.774

M. Lonkar; S. Ponnaluri, “An overview of DC microgrid operation and control”, in IREC2015 The Sixth International Renewable Energy Congress, 2015, pp. 1–6. https://doi.org/10.1109/IREC.2015.7110892

A. Iovine; G. Damm; E. D. Santis; M. D. D. Benedetto, “Management controller for a DC MicroGrid integrating renewables and storages”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 90-95, Jul. 2017. https://doi.org/10.1016/j.ifacol.2017.08.016

D. Murillo-Yarce; A. Garcés-Ruiz; A. Escobar-Mejía, “Passivity based control for DC-microgrids with constant power terminals in island mode operation”, Rev. Fac. Ing. Univ. Antioquia, pp. 32-39, Mar. 2018. https://doi.org/10.17533/udea.redin.n86a05

H. Saadat, Power System Analysis. PSA Publishing LLC, 2011.

M. M. Hoogwijk, “On the global and regional potential of renewable energy sources”, (Ph.D. Thesis), at Faculteit Scheikunde, Universiteit Utrecht, Mar. 2004. https://www.osti.gov/etdeweb/biblio/20449848

S. Surender Reddy; P. R. Bijwe; A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period”, IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1440-1451, 2015. https://doi.org/10.1109/JSYST.2014.2325967

W. D. Giraldo Gómez, “Metodología para la gestión optima de energía en una micro red eléctrica interconectada”, (Tesis de Maestría), Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia., 2016.https://repositorio.unal.edu.co/handle/unal/57269

J. Lv; X. Wang; G. Wang; Y. Song, “Research on Control Strategy of Isolated DC Microgrid Based on SOC of Energy Storage System”, Electronics, vol. 10, no. 7, p. 834, Mar. 2021. https://doi.org/10.3390/electronics10070834

J. Giraldo; E. Mojica-Nava; N. Quijano, “Synchronization of isolated microgrids with a communication infrastructure using energy storage systems”, Int. J. Electr. Power Energy, vol. 63, pp. 71-82, Dec. 2014. https://doi.org/10.1016/j.ijepes.2014.05.042

J. Guo; T. Chen; B. Chaudhuri; S. Y. R. Hui, “Stability of Isolated Microgrids with Renewable Generation and Smart Loads”, IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2845-2854, 2020. https://doi.org/10.1109/TSTE.2020.2980276

L. Liang; Y. Hou; D. J. Hill, “Enhancing Flexibility of an Islanded Microgrid with Electric Springs”, IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 899-909, 2019. https://doi.org/10.1109/TSG.2017.2754545

D. J. Ryan; R. Razzaghi; H. D. Torresan; A. Karimi; B. Bahrani, “Grid-Supporting Battery Energy Storage Systems in Islanded Microgrids: A Data-Driven Control Approach”, IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 834-846, 2021. https://doi.org/10.1109/TSTE.2020.3022362

J. G. de Matos; F. S. F. e Silva; L. A. d. S. Ribeiro, “Power Control in AC Isolated Microgrids with Renewable Energy Sources and Energy Storage Systems”, IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3490-3498, 2015. https://doi.org/10.1109/TIE.2014.2367463

J. M. Guerrero; J. C. Vasquez; J. Matas; L. García de Vicuña; M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization”, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, 2011. https://doi.org/10.1109/TIE.2010.2066534

Z. Shuai; J. Fang; F. Ning; Z. J. Shen, “Hierarchical structure and bus voltage control of DC microgrid”, Renew. Sustain. Energy Rev., vol. 82, Part. 3, pp. 3670–3682, Feb. 2018. https://doi.org/10.1016/j.rser.2017.10.096

W. Li; Y. Gu; H. Yang; W. Sun; Y. Chi; X. He, “Hierarchical control of DC microgrids combining robustness and smartness”, CSEE Journal of Power and Energy Systems, vol. 6, no. 2, pp. 384-393, 2019. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8779793

A. A. Hamad; E. F. El-Saadany, “Multi-agent supervisory control for optimal economic dispatch in DC microgrids”, Sustain. Cities Soc., vol. 27, pp. 129-136, Nov. 2016. https://doi.org/10.1016/j.scs.2016.02.016

W. Gil- González; O. D. Montoya; E. Holguín; A. Garces; L. F. Grisales-Noreña, “Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model”, J. Energy Storage., vol. 21, pp. 1-8, Feb. 2019. https://doi.org/10.1016/j.est.2018.10.025

C. Li; F. de Bosio; F. Chen; S. K. Chaudhary; J. C. Vasquez; J. M. Guerrero, “Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 587–595, 2017. https://doi.org/10.1109/JESTPE.2016.2634026

R. Alzate; M. Mantilla, “Proposal for the optimal management of a DC microgrid”, X International Symposium on Electric Power Quality (SICEL 2021). Pereira - Colombia. October 2021.

V. Utkin; J. Guldner; J. Shi, Sliding Mode Control in Electromechanical Systems. Taylor & Francis, 1999.

D. C. Hernández Malaver; K. J. Muñoz Galvis, “Control droop de una microrred simple”, (Trabajo de grado), Facultad de Ingenierías Fisicomecánicas, Universidad Industrial de Santander. Bucaramanga, 2019. http://tangara.uis.edu.co/biblioweb/tesis/2019/178062.pdf

D. M. Hernández Vargas, “Despacho económico y su aplicación en microrredes eléctricas”, (Trabajo de grado), Facultad de Ingenierías Fisicomecánicas, Universidad Industrial de Santander. Bucaramanga, 2019. http://tangara.uis.edu.co/biblioweb/tesis/2019/175927.pdf

How to Cite
[1]
R. Alzate-Castaño and M. A. Mantilla-Villalobos, “Optimal Hierarchical Control of Isolated Microgrids”, TecnoL., vol. 25, no. 53, p. e2358, May 2022.

Downloads

Download data is not yet available.
Published
2022-05-31
Section
Research Papers

Altmetric

Crossref Cited-by logo

Some similar items: