Estimación del desempeño energético de una edificación utilizando un indicador compuesto: un caso de estudio

Palabras clave: Indicador desempeño energético de edificaciones, bioconstrucción, diseño verde, simulación energética, eficiencia energética, confort térmico, DesignBuilder

Resumen

Diversos estudios han analizado la integración de estrategias de ahorro energético en edificaciones para mitigar su impacto ambiental. Estos estudios se centraron en un análisis desagregado de estas estrategias y sus efectos sobre el consumo de energía y el comportamiento térmico del edificio utilizando motores de simulación energética (EnergyPlus, TRNSYS y DOE2) o software de interfaz gráfica (DesignBuilder, eQuest y ESP-r). Sin embargo, los edificios son sistemas complejos cuyo comportamiento energético depende de la interacción de componentes pasivos (p. ej., ubicación y materiales de construcción) y dinámicos (p. ej., ocupación). Por lo tanto, este artículo propone un indicador compuesto de desempeño energético de edificaciones (BEP) como una alternativa para enfrentar este fenómeno complejo y multidimensional de manera simplificada. Este indicador considera la eficiencia energética y el confort térmico. Para ello, se seleccionó un edificio real, el Edificio de Ingeniería Eléctrica (EEB) de la Universidad Industrial de Santander, con el fin de verificar el desempeño del indicador BEP. Además, se realizó un análisis de sensibilidad para diferentes métodos matemáticos de agregación y valores de ponderación para probar su idoneidad para reproducir el comportamiento del edificio. Se propusieron diferentes escenarios de simulación modelados mediante el software DesignBuilder, en los que se analizaron individualmente las estrategias de ahorro energético integradas con el edificio. Los resultados confirmaron que las estrategias de ahorro energético del edificio mejoraron el indicador en aproximadamente un 16 %. Asimismo, fue posible verificar que dicho indicador reproduce adecuadamente el comportamiento energético de la edificación mientras se garantiza condiciones de confort. Por último, se espera que el indicador contribuya en la integración de criterios de sostenibilidad en edificaciones durante las etapas de diseño y remodelación.

Biografía del autor/a

Marlón Millán-Martínez*, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, marlonmillanm@gmail.com

Germán Osma-Pinto, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, gealosma@uis.edu.co

Julián Jaramillo-Ibarra , Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, jejarami@uis.edu.co

Referencias bibliográficas

UNEP, “Renewables in cities: 2019 global status report”, Paris, 2019.

UN DESAPD, “World population prospects 2019: Highlights”, 2019. https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf

U.S. Energy Information Agency, “Annual Energy Outlook 2019 with projections to 2050”, EIA, 2019. https://www.idgenergyinv.com/Product_Photo/files/USA Annual Energy Outlook 2019 (with projections to 2050) - EIA- January 2019.pdf

World Energy Council, “World Energy Scenarios: Composing energy futures to 2050”, Switzerland, 2013.

IEA; UNEP, “Global Status Report 2018: Towards a zero‐emission, efficient and resilient buildings and construction sector”, 2018. https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf

S. Durdyev; E. K. Zavadskas; D. Thurnell; A. Banaitis; A. Ihtiyar, “Sustainable construction industry in Cambodia: Awareness, drivers and barriers”, Sustain., vol. 10, no. 2, pp. 1–19, 2018. https://doi.org/10.3390/su10020392

S. Dongmei, “Research and Application of Energy Consumption Benchmarking Method for Public Buildings Based on Actual Energy Consumption”, Energy Procedia, vol. 152, pp. 475–483, Oct. 2018. https://doi.org/10.1016/j.egypro.2018.09.256

M. A. J. Quirapas-Franco; P. Pawar; X. Wu, “Green building policies in cities: A comparative assessment and analysis”, Energy Build., vol. 231, p. 110561, Jan. 2021. https://doi.org/10.1016/j.enbuild.2020.110561

D. Zhang; Y. Tu, “Green building, pro-environmental behavior and well-being: Evidence from Singapore”, Cities, vol. 108, p. 102980, Jan. 2021. https://doi.org/10.1016/j.cities.2020.102980

L. He; L. Chen, “The incentive effects of different government subsidy policies on green buildings”, Renew. Sustain. Energy Rev., vol. 135, p. 110123, Jan. 2021. https://doi.org/10.1016/j.rser.2020.110123

R. Phillips; L. Troup; D. Fannon; M. J. Eckelman, “Do resilient and sustainable design strategies conflict in commercial buildings? A critical analysis of existing resilient building frameworks and their sustainability implications”, Energy Build., vol. 146, pp. 295–311, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.009

J. M. Diaz-Sarachaga; D. Jato-Espino, “Do sustainable community rating systems address resilience?”, Cities, vol. 93, pp. 62–71, Oct. 2019. https://doi.org/10.1016/j.cities.2019.04.018

W. Wang, “The concept of sustainable construction project management in international practice”, Environ. Dev. Sustain., vol. 23, pp. 16358–16380, Mar. 2021. https://doi.org/10.1007/s10668-021-01333-z

J. O. Atanda; O. A. P. Olukoya, “Green building standards: Opportunities for Nigeria”, J. Clean. Prod., vol. 227, pp. 366–377, Aug. 2019. https://doi.org/10.1016/j.jclepro.2019.04.189

Z. Ding et al., “Green building evaluation system implementation”, Build. Environ., vol. 133, pp. 32–40, Apr. 2018. https://doi.org/10.1016/j.buildenv.2018.02.012

J. B. Andrade; L. Bragança, “Assessing buildings’ adaptability at early design stages”, IOP Conf. Ser. Earth Environ. Sci. Conf. Ser. Earth Environ. Sci., vol. 225, p. 12012, Feb. 2019. https://doi.org/10.1088/1755-1315/225/1/012012

G. Ma; T. Liu; S. Shang, “Improving the climate adaptability of building green retrofitting in different regions: a weight correction system for Chinese national standard”, Sustain. Cities Soc., vol. 69, p. 102843, Jun. 2021. https://doi.org/10.1016/j.scs.2021.102843

M. M. Ouf; W. O’Brien; B. Gunay, “On quantifying building performance adaptability to variable occupancy”, Build. Environ., vol. 155, pp. 257–267, May. 2019. https://doi.org/10.1016/j.buildenv.2019.03.048

P. Herthogs; W. Debacker; B. Tunçer; Y. De Weerdt; N. De Temmerman, “Quantifying the Generality and Adaptability of Building Layouts Using Weighted Graphs: The SAGA Method”, Buildings, vol. 9, no. 4, Apr. 2019. https://doi.org/10.3390/buildings9040092

G. Capeluto, “Adaptability in envelope energy retrofits through addition of intelligence features”, Archit. Sci. Rev., vol. 62, no. 3, pp. 216–229, Feb. 2019. https://doi.org/10.1080/00038628.2019.1574707

M. Petrullo; S. A. Jones; B. Morton; A. Lorenz, “World Green Building Trends 2018 SmartMarket Report”, Dodge Data & Anal., 2018. https://www.worldgbc.org/sites/default/files/World%20Green%20Building%20Trends%202018%20SMR%20FINAL%2010-11.pdf

G. Osma; L. Amado; R. Villamizar; G. Ordoñez, “Building Automation Systems as Tool to Improve the Resilience from Energy Behavior Approach”, Procedia Eng., vol. 118, pp. 861–868, 2015. https://doi.org/10.1016/j.proeng.2015.08.524

S. Yeom; H. Kim; T. Hong; M. Lee, “Determining the optimal window size of office buildings considering the workers’ task performance and the building’s energy consumption”, Build. Environ., vol. 177, p. 106872, Jun. 2020. https://doi.org/10.1016/j.buildenv.2020.106872

F. Shadram; J. Mukkavaara, “Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings”, Energy Build., vol. 183, pp. 283–296, Jan. 2019. https://doi.org/10.1016/j.enbuild.2018.11.026

K. D. Reyes-Barajas; R. A. Romero-Moreno; C. Sotelo-Salas; A. Luna-León; G. Bojórquez-Morales, “Passive strategies for energy-efficient building envelopes for housing developments in hot arid climates”, in WIT Transactions on Ecology and the Environment, vol. 249, pp. 115–125, 2020. https://doi.org/10.2495/SC200101

I. El-Darwish; M. Gomaa, “Retrofitting strategy for building envelopes to achieve energy efficiency”, Alexandria Eng. J., vol. 56, no. 4, pp. 579–589, Dec. 2017. https://doi.org/10.1016/j.aej.2017.05.011

N. Delgarm; B. Sajadi; F. Kowsary; S. Delgarm, “Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)”, Appl. Energy, vol. 170, pp. 293–303, May. 2016. https://doi.org/10.1016/j.apenergy.2016.02.141

P. Shiel; S. Tarantino; M. Fischer, “Parametric analysis of design stage building energy performance simulation models”, Energy Build., vol. 172, pp. 78–93, Aug. 2018. https://doi.org/10.1016/j.enbuild.2018.04.045

Y. Chen; X. Liang; T. Hong; X. Luo, “Simulation and visualization of energy-related occupant behavior in office buildings”, Build. Simul., vol. 10, no. 6, pp. 785–798, Mar. 2017. https://doi.org/10.1007/s12273-017-0355-2

E. Cuerda; O. Guerra-Santin; J. J. Sendra; F. J. Neila, “Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models”, Energy Build., vol. 209, p. 109688, Feb. 2020. https://doi.org/10.1016/j.enbuild.2019.109688

J. H. Choi, “Investigation of the correlation of building energy use intensity estimated by six building performance simulation tools”, Energy Build., vol. 147, pp. 14–26, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.078

C. F. Reinhart; C. Cerezo Davila, “Urban building energy modeling - A review of a nascent field”, Build. Environ., vol. 97, pp. 196–202, Feb. 2016. https://doi.org/10.1016/j.buildenv.2015.12.001

H. M. Cho; J. H. Park; S. Wi; S. J. Chang; G. Y. Yun; S. Kim, “Energy retrofit analysis of cross-laminated timber residential buildings in Seoul, Korea: Insights from a case study of packages”, Energy Build., vol. 202, p. 109329, Nov. 2019. https://doi.org/10.1016/j.enbuild.2019.07.046

C. Filippín; S. Flores Larsen; F. Ricard, “Improvement of energy performance metrics for the retrofit of the built environment. Adaptation to climate change and mitigation of energy poverty”, Energy Build., vol. 165, pp. 399–415, Apr. 2018. https://doi.org/10.1016/j.enbuild.2017.12.050

M. G. Gomes; A. M. Rodrigues; F. Natividade, “Thermal and energy performance of medical offices of a heritage hospital building”, J. Build. Eng., vol. 40, p. 102349, Aug. 2021. https://doi.org/10.1016/j.jobe.2021.102349

J. Teng; P. Wang; X. Mu; W. Wang, “Energy-saving performance analysis of green technology implications for decision-makers of multi-story buildings”, Environ. Dev. Sustain., vol. 23, pp. 15639–15665, Mar. 2021. https://doi.org/10.1007/s10668-021-01304-4

X. Yang; L. Zhao; M. Bruse; Q. Meng, “An integrated simulation method for building energy performance assessment in urban environments”, Energy Build., vol. 54, pp. 243–251, Nov. 2012. https://doi.org/10.1016/j.enbuild.2012.07.042

L. Zhu; B. Wang; Y. Sun, “Multi-objective optimization for energy consumption, daylighting and thermal comfort performance of rural tourism buildings in north China”, Build. Environ., vol. 176, p. 106841, Jun. 2020. https://doi.org/10.1016/j.buildenv.2020.106841

Y. Schwartz; R. Raslan, “Variations in results of building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study”, Energy Build., vol. 62, pp. 350–359, Jul. 2013. https://doi.org/10.1016/j.enbuild.2013.03.022

A. Moazami; S. Carlucci; V. M. Nik; S. Geving, “Towards climate robust buildings: An innovative method for designing buildings with robust energy performance under climate change”, Energy Build., vol. 202, p. 109378, Nov. 2019. https://doi.org/10.1016/j.enbuild.2019.109378

S. G. Mahiwal; M. K. Bhoi; N. Bhatt, “Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology”, Asian J. Civ. Eng., vol. 22, pp. 877–894, Mar. 2021. https://doi.org/10.1007/s42107-021-00352-5

G. Akkose; C. Meral Akgul; I. G. Dino, “Educational building retrofit under climate change and urban heat island effect”, J. Build. Eng., vol. 40, p. 102294, Aug. 2021. https://doi.org/10.1016/j.jobe.2021.102294

E. Hewitt; A. Oberg; C. Coronado; C. Andrews, “Assessing ‘green’ and ‘resilient’ building features using a purposeful systems approach”, Sustain. Cities Soc., vol. 48, p. 101546, Jul. 2019. https://doi.org/10.1016/j.scs.2019.101546

A. Costa; M. M. Keane; J. I. Torrens; E. Corry, “Building operation and energy performance: Monitoring, analysis and optimisation toolkit”, Appl. Energy, vol. 101, pp. 310–316, Jan. 2013. https://doi.org/10.1016/j.apenergy.2011.10.037

C. Fan; F. Xiao; Z. Li; J. Wang, “Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review”, Energy Build., vol. 159, pp. 296–308, Jan. 2018. https://doi.org/10.1016/j.enbuild.2017.11.008

M. Mazziotta; A. Pareto, “Synthesis of Indicators: The Composite Indicators Approach”, Social Indicators Research Series, In F. Maggino, Ed. Cham: Springer International Publishing, vol. 70, pp. 159–191, Jul. 2017. https://doi.org/10.1007/978-3-319-60595-1_7

OECD, Handbook on constructing composite indicators: methodology and user guide. OECD publishing, 2008.

F. Giambona; E. Vassallo, “Composite indicator of social inclusion for European countries”, Soc. Indic. Res., vol. 116, no. 1, pp. 269–293, Mar. 2014. https://doi.org/10.1007/s11205-013-0274-2

P. Hoffmann; M. Kremer; S. Zaharia, “Financial integration in Europe through the lens of composite indicators”, Econ. Lett., vol. 194, p. 109344, Sep. 2020. https://doi.org/10.1016/j.econlet.2020.109344

B. Talukder; K. W. Hipel; G. W. vanLoon, “Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques”, Resources, vol. 6, no. 4, p. 66, Nov. 2017. https://doi.org/10.3390/resources6040066

C. Dominguez-Gil; M. M. Segovia-Gonzalez; I. Contreras, “A multiplicative composite indicator to evaluate educational systems in OECD countries”, Comp. A J. Comp. Int. Educ., pp. 1–18, 2021. https://doi.org/10.1080/03057925.2020.1865791

S. El Gibari; T. Gómez; F. Ruiz, “Evaluating university performance using reference point based composite indicators”, J. Informetr., vol. 12, no. 4, pp. 1235–1250, Nov. 2018. https://doi.org/10.1016/j.joi.2018.10.003

M. Feofilovs; F. Romagnoli, “Measuring Community Disaster Resilience in the Latvian Context: An Apply Case Using a Composite Indicator Approach”, Energy Procedia, vol. 113, pp. 43–50, May 2017. https://doi.org/10.1016/j.egypro.2017.04.012

M. P. Dočekalová; A. Kocmanová, “Composite indicator for measuring corporate sustainability”, Ecol. Indic., vol. 61, part. 2, pp. 612–623, Feb. 2016. https://doi.org/10.1016/j.ecolind.2015.10.012

M. J. Burgass; B. S. Halpern; E. Nicholson; E. J. Milner-Gulland, “Navigating uncertainty in environmental composite indicators”, Ecol. Indic., vol. 75, pp. 268–278, Apr. 2017. https://doi.org/10.1016/j.ecolind.2016.12.034

M. Reuter; M. K. Patel; W. Eichhammer; B. Lapillonne; K. Pollier, “A comprehensive indicator set for measuring multiple benefits of energy efficiency”, Energy Policy, vol. 139, p. 111284, Apr. 2020. https://doi.org/10.1016/j.enpol.2020.111284

J. Martchamadol; S. Kumar, “An aggregated energy security performance indicator”, Appl. Energy, vol. 103, pp. 653–670. Mar. 2013. https://doi.org/10.1016/j.apenergy.2012.10.027

M. Radovanović; S. Filipović; D. Pavlović, “Energy security measurement – A sustainable approach”, Renew. Sustain. Energy Rev., vol. 68, part. 2, pp. 1020–1032, Feb. 2017. https://doi.org/10.1016/j.rser.2016.02.010

J. A. Kelly; J. P. Clinch; L. Kelleher; S. Shahab, “Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures”, Energy Policy, vol. 146, p. 111791, Nov. 2020. https://doi.org/10.1016/j.enpol.2020.111791

J. Augutis; R. Krikštolaitis; L. Martišauskas; S. Urbonienė; R. Urbonas; A. B. Ušpurienė, “Analysis of energy security level in the Baltic States based on indicator approach”, Energy, vol. 199, p. 117427, May 2020. https://doi.org/10.1016/j.energy.2020.117427

M. M. Rahman; M. G. Rasul; M. M. K. Khan, “Energy conservation measures in an institutional building in sub-tropical climate in Australia”, Appl. Energy, vol. 87, no. 10, pp. 2994–3004, Oct. 2010. https://doi.org/10.1016/j.apenergy.2010.04.005

I. Iddrisu; S. C. Bhattacharyya, “Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development”, Renew. Sustain. Energy Rev., vol. 50, pp. 513–530, Oct. 2015. https://doi.org/10.1016/j.rser.2015.05.032

P. Mathew; L. Sanchez; S. H. Lee; T. Walter, “Assessing the Energy Resilience of Office Buildings: Development and Testing of a Simplified Metric for Real Estate Stakeholders”, Buildings, vol. 11, no. 3, Mar. 2021. https://doi.org/10.3390/buildings11030096

A. Gatto; C. Drago, “Measuring and modeling energy resilience”, Ecol. Econ., vol. 172, p. 106527, Jun. 2020. https://doi.org/10.1016/j.ecolecon.2019.106527

I. Siksnelyte-Butkiene; D. Streimikiene; V. Lekavicius; T. Balezentis, “Energy poverty indicators: A systematic literature review and comprehensive analysis of integrity”, Sustain. Cities Soc., vol. 67, p. 102756, Apr. 2021. https://doi.org/10.1016/j.scs.2021.102756

K. Dolge; A. Kubule; D. Blumberga, “Composite index for energy efficiency evaluation of industrial sector: sub-sectoral comparison”, Environ. Sustain. Indic., vol. 8, p. 100062, Dec. 2020. https://doi.org/10.1016/j.indic.2020.100062

Y. Li; J. O’Donnell; R. García-Castro; S. Vega-Sánchez, “Identifying stakeholders and key performance indicators for district and building energy performance analysis”, Energy Build., vol. 155, pp. 1–15, Nov. 2017. https://doi.org/10.1016/j.enbuild.2017.09.003

J. Al Dakheel; C. Del Pero; N. Aste; F. Leonforte, “Smart buildings features and key performance indicators: A review”, Sustain. Cities Soc., vol. 61, p. 102328, Oct. 2020. https://doi.org/10.1016/j.scs.2020.102328

R. Karagiannis; G. Karagiannis, “Constructing composite indicators with Shannon entropy: The case of Human Development Index”, Socioecon. Plann. Sci., vol. 70, p. 100701, Jun. 2020. https://doi.org/10.1016/j.seps.2019.03.007

P. W. M. Souza-Filho et al., “The sustainability index of the physical mining Environment in protected areas, Eastern Amazon”, Environ. Sustain. Indic., vol. 8, p. 100074, Dec. 2020. https://doi.org/10.1016/j.indic.2020.100074

O. Kaldas; L. A. Shihata; J. Kiefer, “An index-based sustainability assessment framework for manufacturing organizations”, Procedia CIRP, vol. 97, pp. 235–240, 2021. https://doi.org/10.1016/j.procir.2020.05.231

J. M. Cabello; F. Ruiz; B. Pérez-Gladish, “An Alternative Aggregation Process for Composite Indexes: An Application to the Heritage Foundation Economic Freedom Index”, Soc. Indic. Res., vol. 153, no. 2, pp. 443–467, Jan. 2021. https://doi.org/10.1007/s11205-020-02511-8

F. G. Santeramo, “On the Composite Indicators for Food Security: Decisions Matter!”, Food Rev. Int., vol. 31, no. 1, pp. 63–73, 2015. https://doi.org/10.1080/87559129.2014.961076

S. El Gibari; T. Gómez; F. Ruiz, “Building composite indicators using multicriteria methods: a review”, J. Bus. Econ., vol. 89, no. 1, pp. 1–24, Feb. 2019. https://doi.org/10.1007/s11573-018-0902-z

S. G. Medlol; A. A. A. Alwash, “Economic, Social, and Environmental Sustainable Operation of Roadways within the Central Business District (CBD) sector at Hilla City Incorporated with Public Transport”, IOP Conf. Ser. Mater. Sci. Eng., vol. 928, p. 22100, Nov. 2020. https://doi.org/10.1088/1757-899x/928/2/022100

M. Floridi; S. Pagni; S. Falorni; T. Luzzati, “An exercise in composite indicators construction: Assessing the sustainability of Italian regions”, Ecol. Econ., vol. 70, no. 8, pp. 1440–1447, Jun. 2011. https://doi.org/10.1016/j.ecolecon.2011.03.003

L. Molyneaux; C. Brown; L. Wagner; J. Foster, “Measuring resilience in energy systems: Insights from a range of disciplines”, Renew. Sustain. Energy Rev., vol. 59, pp. 1068–1079, Jun. 2016. https://doi.org/10.1016/j.rser.2016.01.063

D. Gatt; C. Yousif; M. Cellura; L. Camilleri; F. Guarino, “Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive”, Renew. Sustain. Energy Rev., vol. 127, p. 109886. Jul. 2020. https://doi.org/10.1016/j.rser.2020.109886

A. Hamburg; K. Kuusk; A. Mikola; T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB”, Energy, vol. 194, p. 116874, Mar. 2020. https://doi.org/10.1016/j.energy.2019.116874

M. M. Islam; M. Hasanuzzaman, “Chapter 1 - Introduction to energy and sustainable development”, in Energy for Sustainable Development, M. D. Hasanuzzaman and N. A. Rahim, Eds. Academic Press, 2020, pp. 1–18. https://doi.org/10.1016/B978-0-12-814645-3.00001-8

J. F. Nicol; S. Roaf, “Rethinking thermal comfort”, Build. Res. & Inf., vol. 45, no. 7, pp. 711–716, Mar. 2017. https://doi.org/10.1080/09613218.2017.1301698

G. Osma-Pinto; G. Ordóñez-Plata, “Measuring the effect of forced irrigation on the front surface of PV panels for warm tropical conditions”, Energy Reports, vol. 5, pp. 501–514, Nov. 2019. https://doi.org/10.1016/j.egyr.2019.04.010

G. Osma-Pinto; G. Ordóñez-Plata, “Measuring factors influencing performance of rooftop PV panels in warm tropical climates”, Sol. Energy, vol. 185, pp. 112–123, Jun. 2019. https://doi.org/10.1016/j.solener.2019.04.053

G. Roshan; M. Arab; V. Klimenko, “Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran”, J. Environ. Heal. Sci. Eng., vol. 17, no. 2, pp. 889–906, Dec. 2019. https://doi.org/10.1007/s40201-019-00406-6

DesignBuilder, “Welcome to DesignBuilder V6.”, https://designbuilder.co.uk/helpv6.0/#Advanced_Calculation_Options.htm

J. Bouyer; C. Inard; M. Musy, “Microclimatic coupling as a solution to improve building energy simulation in an urban context”, Energy Build., vol. 43, no. 7, pp. 1549–1559, Jul. 2011. https://doi.org/10.1016/j.enbuild.2011.02.010

J. Cárdenas-Rangel; G. Osman-Pinto; G. Ordoñez-Plata, “Herramienta metodológica para la evaluación energética mediante simulación de edificaciones en el trópico”, Rev. UIS Ing., vol. 18, no. 2, pp. 259–268, Mar. 2019. https://doi.org/10.18273/revuin.v18n2-2019024

L. Diao; Y. Sun; Z. Chen; J. Chen, “Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation”, Energy Build., vol. 147, pp. 47–66, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.072

Cómo citar
[1]
M. Millán-Martínez, G. . Osma-Pinto, y J. Jaramillo-Ibarra, «Estimación del desempeño energético de una edificación utilizando un indicador compuesto: un caso de estudio», TecnoL., vol. 25, n.º 54, p. e2352, ago. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-08-03
Sección
Artículos de investigación

Métricas