Energy Management System for a Microgrid with Battery Storage and Biomass Incorporation

Keywords: Batteries, biomass, gasifier, microgrid, Energy Management System

Abstract

This paper presents a quantitative dynamic model that can assess the response of a set of users to different Demand-Side Management strategies that are available. The main objective is to conceptualize, implement, and validate said model. As a result of a literature review, the model includes classical demand response techniques and proposes new customer actions and other novel aspects, such as energy culture and energy education. Based on the conceptualization of the model, this paper presents the structure that interrelates customer actions, demand proposals, cost-benefit analysis, and customer response. It also details the main aspects of the mathematical model, which was implemented in the Modelica modeling language. This paper includes simulations of intra-day and inter-day load shifting strategies using real data from the electricity sector in Colombia and different tariff factors. Finally, the results obtained show changes in daily consumption profiles, energy cost, system power peak, and load duration curve. Three conclusions are drawn: (i) Energy culture and pedagogy are essential to accelerate customer response time. (ii) The amount of the bill paid by customers decreases more quickly in the intra-day strategy than in its inter-day counterpart; in both cases, the cost reduction percentage is similar. (iii) Tariff increases accelerate customer response, and this relationship varies according to the Demand-Side Management strategies that are available.

Author Biographies

Albert Deluque Pinto*, Universidad de La Guajira, Colombia

Universidad de La Guajira, Riohacha – Colombia, adeluquep@uniguajira.edu.co

Ernesto Pérez González , Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Medellín – Colombia, eperezg@unal.edu.co

Gail Gutiérrez Ramírez, Universidad de La Guajira, Colombia

Universidad de La Guajira, Riohacha – Colombia, galbeirog@uniguajira.edu.co

References

J. Shen; C. Jiang; Y. Liu; X. Wang, “A Microgrid Energy Management System and Risk Management under an Electricity Market Environment”, IEEE Access, vol. 4, no. 1, pp. 2349–2356, Apr. 2016. https://doi.org/10.1109/ACCESS.2016.2555926

F. Z. Harmouch; N. Krami; N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster”, Sustain. Cities Soc., vol. 40, pp. 416–427, Jul. 2018. https://doi.org/10.1016/j.scs.2018.04.001

F. Valencia; D. Sáez; J. Collado; F. Ávila; A. Marquez; J. J. Espinosa, “Robust Energy Management System Based on Interval Fuzzy Models”, IEEE Trans. Control Syst. Technol., vol. 24, no. 1, pp. 140–157, Apr. 2016. https://doi.org/10.1109/TCST.2015.2421334

J. M. Raya-Armenta; N. Bazmohammadi; J. G. Avina-Cervantes; D. Sáez; J. C. Vasquez; J. M. Guerrero, “Energy management system optimization in islanded microgrids: An overview and future trends”, Renew. Sustain. Energy Rev., vol. 149, p. 111327, Oct. 2021. https://doi.org/10.1016/j.rser.2021.111327

M. W. Khan; J. Wang; L. Xiong; M. Ma, “Modelling and optimal management of distributed microgrid using multi-agent systems”, Sustain. Cities Soc., vol. 41, pp. 154–169, Aug. 2018. https://doi.org/10.1016/j.scs.2018.05.018

M. Marzband; F. Azarinejadian; M. Savaghebi; J. M. Guerrero, “An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with markov chain”, IEEE Syst. J., vol. 11, no. 3, pp. 1712–1722, Sep. 2017. https://doi.org/10.1109/JSYST.2015.2422253

K. Roy; K. K. Mandal; A. C. Mandal, “Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system”, Energy, vol. 167, pp. 402–416, Jan. 2019. https://doi.org/10.1016/j.energy.2018.10.153

A. Ghasemi; M. Enayatzare, “Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response”, Renew. Energy, vol. 123, pp. 460–474, Aug. 2018. https://doi.org/10.1016/j.renene.2018.02.072

S. M. Azzam; T. Elshabrawy; M. Ashour, “A Bi-level Framework for Supply and Demand Side Energy Management in an Islanded Microgrid”, IEEE Trans. Ind. Informatics, vol. 3203, pp. 1–12, Jan. 2022. https://doi.org/10.1109/TII.2022.3144154

B. Javanmard; M. Tabrizian; M. Ansarian; A. Ahmarinejad, “Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources”, J. Energy Storage, vol. 42, p. 102971, Oct. 2021. https://doi.org/10.1016/j.est.2021.102971

R. Saki; E. Kianmehr; E. Rokrok; M. Doostizadeh; R. Khezri; M. Shafie-khah, “Interactive Multi-level planning for energy management in clustered microgrids considering flexible demands”, Int. J. Electr. Power Energy Syst., vol. 138, p. 107978, Jun. 2022. https://doi.org/10.1016/j.ijepes.2022.107978

N. Eghbali; S. M. Hakimi; A. Hasankhani; G. Derakhshan; B. Abdi, “Stochastic energy management for a renewable energy based microgrid considering battery, hydrogen storage, and demand response”, Sustain. Energy, Grids Networks, vol. 30, p. 100652, Jun. 2022. https://doi.org/10.1016/j.segan.2022.100652

A. Sánchez Silvera; J. G. Guarnizo-Marín; E. F. Forero-García; D. Montenegro-Martínez, “Decentralized Energy Management System Based on Multi-agents to Operate Multiple Microgrids”, TecnoLógicas, vol. 24, no. 51, p. e1880, Jun. 2021. https://doi.org/10.22430/22565337.1880

M. F. H. Masum; P. Dwivedi; R. De La Torre, “Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia”, For. Policy Econ., vol. 124, p. 102381, Mar. 2021. https://doi.org/10.1016/j.forpol.2020.102381

A. Sagastume Gutiérrez; J. J. Cabello Eras; L. Hens; C. Vandecasteele, “The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia”, J. Clean. Prod., vol. 269, p. 122317Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122317

T. González Estrada; J. A. Valencia Marín; Unidad de Planeación Minero Energética(UPME), “Integración de las energías renovables no convencionales en Colombia”, Bogotá, Colombia, 2015. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf

AENE Consultoria, “Potencialidades de los cultivos energéticos y residuos agrícolas en Colombia: informe final”, Bogotá, Colombia, ANC-631 – 03, Jul. 2003. http://bdigital.upme.gov.co/handle/001/1287

Y. Zheng; B. M. Jenkins; K. Kornbluth; C. Træholt, “Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage”, Renew. Energy, vol. 123, pp. 204–217, Aug. 2018. https://doi.org/10.1016/j.renene.2018.01.120

A. Gonzalez; J.-R. Riba; B. Esteban; A. Rius, “Environmental and cost optimal design of a biomass–Wind–PV electricity generation system”, Renew. Energy, vol. 126, pp. 420–430, Oct. 2018. https://doi.org/10.1016/j.renene.2018.03.062

Y. Zheng; B. M. Jenkins; K. Kornbluth; A. Kendall; C. Træholt, “Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage”, Energy, vol. 155, pp. 620–629, Jul. 2018. https://doi.org/10.1016/j.energy.2018.05.036

Y. Zheng; B. M. Jenkins; K. Kornbluth; A. Kendall; C. Træholt, “Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty”, Appl. Energy, vol. 230, pp. 836–844, Nov. 2018. https://doi.org/10.1016/j.apenergy.2018.09.015

M. M. Morato; J. D. Vergara-Dietrich; P. R. C. Mendes; J. E. Normey-Rico; C. Bordons, “A Two-Layer EMS for Cooperative Sugarcane-based Microgrids”, Int. J. Electr. Power Energy Syst., vol. 118, p. 105752, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105752

N. Tomin et al., “Design and optimal energy management of community microgrids with flexible renewable energy sources”, Renew. Energy, vol. 183, pp. 903–921, Jan. 2022. https://doi.org/10.1016/j.renene.2021.11.024

D. Ribó-Pérez; Á. Herraiz-Cañete; D. Alfonso-Solar; C. Vargas-Salgado; T. Gómez-Navarro, “Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER”, Renew. Energy, vol. 174, pp. 501–512, Aug. 2021. https://doi.org/10.1016/j.renene.2021.04.083

P. Sun; T. Yun; Z. Chen, “Multi-objective robust optimization of multi-energy microgrid with waste treatment”, Renew. Energy, vol. 178, pp. 1198–1210, Nov. 2021. https://doi.org/10.1016/j.renene.2021.06.041

M. B. Eteiba; S. Barakat; M. M. Samy; W. I. Wahba, “Optimization of an off-grid PV/Biomass hybrid system with different battery technologies”, Sustain. Cities Soc., vol. 40, pp. 713–727, Jul. 2018. https://doi.org/10.1016/j.scs.2018.01.012

C. Wang; Y. Liu; X. Li; L. Guo; L. Qiao; H. Lu, “Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system”, Energy, vol. 97, pp. 90–104, Feb. 2016. https://doi.org/10.1016/j.energy.2015.12.099

P. C. Roy; A. Datta; N. Chakraborty, “An assessment of different biomass feedstocks in a downdraft gasifier for engine application”, Fuel, vol. 106, pp. 864–868, Apr. 2013. https://doi.org/10.1016/j.fuel.2012.12.053

P. C. Roy; A. Datta; N. Chakraborty, “Modelling of a downdraft biomass gasifier with finite rate kinetics in the reduction zone”, Int. J. Energy Res, vol. 33, no. 9, pp. 833–851, Jul. 2009. https://doi.org/10.1002/er.1517

S. Jarungthammachote; A. Dutta, “Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier”, Energy, vol. 32, no. 4, pp. 1660–1669, Sep. 2007. https://doi.org/10.1016/j.energy.2007.01.010

M. Grant; S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1.”, Mar. 2014. http://cvxr.com/cvx

S. Chalise; J. Sternhagen; T. M. Hansen; R. Tonkoski, “Energy management of remote microgrids considering battery lifetime”, Electr. J., vol. 29, no. 6, pp. 1–10, Jul. 2016. https://doi.org/10.1016/j.tej.2016.07.003

S. A. Mansouri; A. Ahmarinejad; M. S. Javadi; A. E. Nezhad; M. Shafie-Khah; J. P. Catalao, “Demand response role for enhancing the flexibility of local energy systems.”, in Distributed Energy Resources in Local Integrated Energy Systems, 1a ed., Amsterdam, Netherlandas: Elsevier, 2021, pp. 279–313. https://www.elsevier.com/books/distributed-energy-resources-in-local-integrated-energy-systems/graditi/978-0-12-823899-8

Zaheeruddin; M. Manas, “Renewable energy management through microgrid central controller design: An approach to integrate solar, wind and biomass with battery”, Energy Reports, vol. 1, pp. 156–163, Nov. 2015. https://doi.org/10.1016/j.egyr.2015.06.003

W. Shi; X. Xie; C. C. Chu; R. Gadh, “Distributed Optimal Energy Management in Microgrids”, IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1137–1146, May 2015. https://doi.org/10.1109/TSG.2014.2373150

M. Marzband; H. Alavi; S. S. Ghazimirsaeid; H. Uppal; T. Fernando, “Optimal energy management system based on stochastic approach for a home Microgrid with integrated responsive load demand and energy storage”, Sustain. Cities Soc., vol. 28, pp. 256–264, Jan. 2017. https://doi.org/10.1016/j.scs.2016.09.017

M. Elsied; A. Oukaour; T. Youssef; H. Gualous; O. Mohammed, “An advanced real time energy management system for microgrids”, Energy, vol. 114, pp. 742–752, Nov. 2016. https://doi.org/10.1016/j.energy.2016.08.048

S. Howell; Y. Rezgui; J.-L. Hippolyte; B. Jayan; H. Li, “Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources”, Renew. Sustain. Energy Rev., vol. 77, pp. 193–214, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.107

J. D. Martínez; K. Mahkamov; R. V. Andrade; E. E. Silva Lora, “Syngas production in downdraft biomass gasifiers and its application using internal combustion engines”, Renew. Energy, vol. 38, no. 1, pp. 1–9, Feb. 2012. https://doi.org/10.1016/j.renene.2011.07.035

F. Centeno; K. Mahkamov; E. E. Silva Lora; R. V. Andrade, “Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system”, Renew. Energy, vol. 37, no. 1, pp. 97–108, Jan. 2012. https://doi.org/10.1016/j.renene.2011.06.008

T. H. Jayah; L. Aye; R. J. Fuller; D. F. Stewart, “Computer simulation of a downdraft wood gasifier for tea drying”, Biomass and Bioenergy, vol. 25, no. 4, pp. 459–469, Oct. 2003. https://doi.org/10.1016/S0961-9534(03)00037-0

A. K. Sharma, “Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier”, Energy Convers. Manag., vol. 49, no. 4, pp. 832–842, Apr. 2008. https://doi.org/10.1016/j.enconman.2007.06.025

D. Buttsworth, “Spark Ignition Internal Combustion Engine Modelling using Matlab”, Toowoomba, Australia, Rep. TR-2002-02, Oct. 2002. http://www.usq.edu.au/

R. Macias N; F. Vélez; L. A. Blanco Leal, Generación de energía eléctrica mediante sistema híbrido Solar/Gasificación de residuos agroindustriales HIBRELEC. España: CARTYF, 2016. https://www.researchgate.net/publication/323706191%0D

How to Cite
[1]
A. Deluque Pinto, E. . Pérez González, and G. Gutiérrez Ramírez, “Energy Management System for a Microgrid with Battery Storage and Biomass Incorporation”, TecnoL., vol. 25, no. 54, p. e2356, Aug. 2022.

Downloads

Download data is not yet available.
Published
2022-08-11
Section
Research Papers

Altmetric

Crossref Cited-by logo