Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes

Palabras clave: Catalizador heterogéneo, óxido de hierro, proceso avanzado de oxidación, reacción Fenton, tecnología de remoción de contaminante

Resumen

Existe la necesidad de diseñar nuevas tecnologías para el tratamiento de aguas residuales, con mayor eficiencia y alcance de aplicación ingenieril. Entre dichas tecnologías, los procesos avanzados de oxidación (AOP, por sus siglas en inglés) han demostrado alta eficiencia y potencial aplicación en la degradación de contaminantes peligrosos. Las reacciones Fenton y tipo Fenton constituyen el grupo de AOP de uso más extendido, debido a su gran poder oxidante y viabilidad de aplicación. Los óxidos de hierro, estables, no tóxicos y abundantes, han sido ampliamente estudiados como catalizadores de sistemas tipo Fenton. El objetivo del presente estudio fue mostrar el estado actual sobre los avances recientes en la aplicación de los óxidos de hierro como catalizadores en este tipo de sistemas. Metodológicamente, se realizó una revisión bibliográfica sistemática sobre óxidos de hierro empleados en procesos tipo Fenton, usando la base de datos Scopus con una fórmula de búsqueda que incluyó los descriptores y operadores booleanos apropiados. Como resultado, se identificó, clasificó y analizó una amplia variedad de estructuras con diferentes características y desempeño catalítico. En conclusión, las especies más estudiadas como catalizadores han sido magnetita (Fe3O4), hematita (α-Fe2O3), goethita (α-FeOOH) y ferrihidrita (FeOOH), mostrando diferentes niveles de degradación de contaminantes orgánicos, dependiendo del tipo de sustrato, pH, temperatura y concentración de H2O2. Además, se describieron algunas modificaciones enfocadas a mejorar su eficiencia catalítica: empleo de radiación UV-Vis, incorporación de Fe metálico (Fe0) o metales de transición (Co, Cu y Mn), soportes catalíticos y control de la morfología de partículas.

Biografía del autor/a

Valentina Garzón-Cucaita , Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Bogotá-Colombia, avgarzonc@unal.edu.co

José G. Carriazo* , Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Bogotá-Colombia, jcarriazog@unal.edu.co

Referencias bibliográficas

J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications,” J Mol Liq, vol. 332, p. 115755, Jun. 2021, https://doi.org/10.1016/j.molliq.2021.115755

J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bulletin of Materials Science, vol. 42, no. 4, p. 137, Apr. 2019, https://doi.org/10.1007/s12034-019-1817-1

S. K. Sharma, R. Sanghi, and A. Mudhoo, “Green Practices to Save Our Precious ‘Water Resource,’” in Advances in Water Treatment and Pollution Prevention, Dordrecht: Springer Netherlands, 2012, pp. 1–36. https://doi.org/10.1007/978-94-007-4204-8_1

G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ Chem Lett, vol. 17, no. 1, pp. 145–155, Mar. 2019, https://doi.org/10.1007/s10311-018-0785-9

R. Ameta, A. K. Chohadia, A. Jain, and P. B. Punjabi, “Fenton and Photo-Fenton Processes,” in Advanced Oxidation Processes for Waste Water Treatment, Elsevier, 2018, pp. 49–87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6

M. Coha, G. Farinelli, A. Tiraferri, M. Minella, and D. Vione, “Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs,” Chemical Engineering Journal, vol. 414, p. 128668, Jun. 2021, https://doi.org/10.1016/j.cej.2021.128668

D. Ghime and P. Ghosh, “Advanced Oxidation Processes: A Powerful Treatment Option for the Removal of Recalcitrant Organic Compounds,” in Advanced Oxidation Processes - Applications, Trends, and Prospects, IntechOpen, 2020. https://doi.org/10.5772/intechopen.90192

M. Faouzi et al., “Advanced oxidation processes for the treatment of wastes polluted with azoic dyes,” Electrochim Acta, vol. 52, no. 1, pp. 325–331, Oct. 2006, https://doi.org/10.1016/j.electacta.2006.05.011

M. Sillanpää, M. C. Ncibi, and A. Matilainen, “Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review,” J Environ Manage, vol. 208, pp. 56–76, Feb. 2018, https://doi.org/10.1016/j.jenvman.2017.12.009

W. H. Glaze, J.-W. Kang, and D. H. Chapin, “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation,” Ozone Sci Eng, vol. 9, no. 4, pp. 335–352, Sep. 1987, https://doi.org/10.1080/01919518708552148

D. S. Babu, V. Srivastava, P. V. Nidheesh, and M. S. Kumar, “Detoxification of water and wastewater by advanced oxidation processes,” Science of The Total Environment, vol. 696, p. 133961, Dec. 2019, https://doi.org/10.1016/j.scitotenv.2019.133961

H. Luo, Y. Zeng, D. He, and X. Pan, “Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review,” Chemical Engineering Journal, vol. 407, p. 127191, Mar. 2021, https://doi.org/10.1016/j.cej.2020.127191

A. D. Bokare and W. Choi, “Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes,” J Hazard Mater, vol. 275, pp. 121–135, Jun. 2014, https://doi.org/10.1016/j.jhazmat.2014.04.054

I. F. Macías-Quiroga, P. A. Henao-Aguirre, A. Marín-Flórez, S. M. Arredondo-López, and N. R. Sanabria-González, “Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends,” Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23791–23811, May 2021, https://doi.org/10.1007/s11356-020-11333-7

D. Kanakaraju, B. D. Glass, and M. Oelgemöller, “Advanced oxidation process-mediated removal of pharmaceuticals from water: A review,” J Environ Manage, vol. 219, pp. 189–207, Aug. 2018, https://doi.org/10.1016/j.jenvman.2018.04.103

Y. Deng and R. Zhao, “Advanced Oxidation Processes (AOPs) in Wastewater Treatment,” Curr Pollut Rep, vol. 1, no. 3, pp. 167–176, Sep. 2015, https://doi.org/10.1007/s40726-015-0015-z

A. Giwa et al., “Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review,” Process Safety and Environmental Protection, vol. 146, pp. 220–256, Feb. 2021, https://doi.org/10.1016/j.psep.2020.08.015

G. P. Anipsitakis and D. D. Dionysiou, “Radical Generation by the Interaction of Transition Metals with Common Oxidants,” Environ Sci Technol, vol. 38, no. 13, pp. 3705–3712, Jul. 2004, https://doi.org/10.1021/es035121o

S. Atalay and G. Ersöz, “Advanced Oxidation Processes for Removal of Dyes from Aqueous Media,” in Green Chemistry for Dyes Removal from Wastewater, Hoboken, NJ, USA: Wiley, 2015, pp. 83–117. https://doi.org/10.1002/9781118721001.ch3

R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Use. Wiley, 2003. https://doi.org/10.1002/3527602097

J. D. Navratil, “Wastewater Treatment Technology Based on Iron Oxides,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer Netherlands, 1999, pp. 417–424. https://doi.org/10.1007/978-94-011-4499-5_31

M. C. Pereira, L. C. A. Oliveira, and E. Murad, “Iron oxide catalysts: Fenton and Fentonlike reactions – a review,” Clay Miner, vol. 47, no. 3, pp. 285–302, Sep. 2012, https://doi.org/10.1180/claymin.2012.047.3.01

Q. Q. Cai, L. Jothinathan, S. H. Deng, S. L. Ong, H. Y. Ng, and J. Y. Hu, “Fenton- and ozone-based AOP processes for industrial effluent treatment,” in Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2021, pp. 199–254. https://doi.org/10.1016/B978-0-12-821011-6.00011-6

C. Lai et al., “Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review,” Science of The Total Environment, vol. 775, p. 145850, Jun. 2021, https://doi.org/10.1016/j.scitotenv.2021.145850

A. N. Soon and B. H. Hameed, “Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process,” Desalination, vol. 269, no. 1–3, pp. 1–16, Mar. 2011, https://doi.org/10.1016/j.desal.2010.11.002

Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review,” Appl Catal B, vol. 255, p. 117739, Oct. 2019, https://doi.org/10.1016/j.apcatb.2019.05.041

A. Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” J Environ Chem Eng, vol. 2, no. 1, pp. 557–572, Mar. 2014, https://doi.org/10.1016/j.jece.2013.10.011

J. de Laat and H. Gallard, “Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling,” Environ Sci Technol, vol. 33, no. 16, pp. 2726–2732, Aug. 1999, https://doi.org/10.1021/es981171v

H. Gallard, J. de Laat, and B. Legube, “Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions,” Water Res, vol. 33, no. 13, pp. 2929–2936, Sep. 1999, https://doi.org/10.1016/S0043-1354(99)00007-X

H. Gallard, J. de Laat, “Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound,” Water Res, vol. 34, no. 12, pp. 3107–3116, Aug. 2000, https://doi.org/10.1016/S0043-1354(00)00074-9

A. Tufail, W. E. Price, M. Mohseni, B. K. Pramanik, and F. I. Hai, “A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity,” Journal of Water Process Engineering, vol. 40, p. 101778, Apr. 2021, https://doi.org/10.1016/j.jwpe.2020.101778

J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” Crit Rev Environ Sci Technol, vol. 36, no. 1, pp. 1–84, Jan. 2006, https://doi.org/10.1080/10643380500326564

S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” J Clean Prod, vol. 64, pp. 24–35, Feb. 2014, https://doi.org/10.1016/j.jclepro.2013.09.013

N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: A review of recent advances,” J Hazard Mater, vol. 404, part. B, p. 124082, Feb. 2021, https://doi.org/10.1016/j.jhazmat.2020.124082

H. Sun, G. Xie, D. He, and L. Zhang, “Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling,” Appl Catal B, vol. 267, p. 118383, Jun. 2020, https://doi.org/10.1016/j.apcatb.2019.118383

L. Xu and J. Wang, “Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles,” Appl Catal B, vol. 123–124, pp. 117–126, Jul. 2012, https://doi.org/10.1016/j.apcatb.2012.04.028

F. Velichkova, C. Julcour-Lebigue, B. Koumanova, and H. Delmas, “Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles,” J Environ Chem Eng, vol. 1, no. 4, pp. 1214–1222, Dec. 2013, https://doi.org/10.1016/j.jece.2013.09.011

X. Wei, X. Xie, Y. Wang, and S. Yang, “Shape-Dependent Fenton-Like Catalytic Activity of Fe3O4 Nanoparticles,” Journal of Environmental Engineering, vol. 146, no. 3, Mar. 2020, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001648

X. Xue, K. Hanna, and N. Deng, “Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide,” J Hazard Mater, vol. 166, no. 1, pp. 407–414, Jul. 2009, https://doi.org/10.1016/j.jhazmat.2008.11.089

K. Rusevova, F.-D. Kopinke, and A. Georgi, “Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance,” J Hazard Mater, vol. 241–242, pp. 433–440, Nov. 2012, https://doi.org/10.1016/j.jhazmat.2012.09.068

S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, and G. Jiang, “Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds,” J Hazard Mater, vol. 167, no. 1–3, pp. 560–566, Aug. 2009, https://doi.org/10.1016/j.jhazmat.2009.01.024

Z.-R. Lin, X.-H. Ma, L. Zhao, and Y.-H. Dong, “Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction,” Chemosphere, vol. 101, pp. 15–20, Apr. 2014, https://doi.org/10.1016/j.chemosphere.2013.11.063

Y. Wang, Y. Gao, L. Chen, and H. Zhang, “Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange,” Catal Today, vol. 252, pp. 107–112, Sep. 2015, https://doi.org/10.1016/j.cattod.2015.01.012

Y. Li and F.-S. Zhang, “Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash,” Chemical Engineering Journal, vol. 158, no. 2, pp. 148–153, Apr. 2010, https://doi.org/10.1016/j.cej.2009.12.021

H. Zhang, H. Fu, and D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,” J Hazard Mater, vol. 172, no. 2–3, pp. 654–660, Dec. 2009, https://doi.org/10.1016/j.jhazmat.2009.07.047

M.-C. Lu, J.-N. Chen, and H.-H. Huang, “Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide,” Chemosphere, vol. 46, no. 1, pp. 131–136, Jan. 2002, https://doi.org/10.1016/S0045-6535(01)00076-5

G. B. Ortiz de la Plata, O. M. Alfano, and A. E. Cassano, “Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions,” Appl Catal B, vol. 95, no. 1–2, pp. 1–13, Mar. 2010, https://doi.org/10.1016/j.apcatb.2009.12.005

R. Prucek, M. Hermanek, and R. Zbořil, “An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—A competition between homogeneous and heterogeneous catalysis,” Appl Catal A Gen, vol. 366, no. 2, pp. 325–332, Sep. 2009, https://doi.org/10.1016/j.apcata.2009.07.019

J. Shi, Z. Ai, and L. Zhang, “Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles,” Water Res, vol. 59, pp. 145–153, Aug. 2014, https://doi.org/10.1016/j.watres.2014.04.015

X. Huang, X. Hou, J. Zhao, and L. Zhang, “Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span,” Appl Catal B, vol. 181, pp. 127–137, Feb. 2016, https://doi.org/10.1016/j.apcatb.2015.06.061

J. He, X. Yang, B. Men, and D. Wang, “Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review,” Journal of Environmental Sciences, vol. 39, pp. 97–109, Jan. 2016, https://doi.org/10.1016/j.jes.2015.12.003

L. Zhao, Z.-R. Lin, X. Ma, and Y.-H. Dong, “Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems,” Chemical Engineering Journal, vol. 352, pp. 343–351, Nov. 2018, https://doi.org/10.1016/j.cej.2018.07.035

W. P. Kwan and B. M. Voelker, “Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems,” Environ Sci Technol, vol. 37, no. 6, pp. 1150–1158, Mar. 2003, https://doi.org/10.1021/es020874g

G. S. Parkinson, “Iron oxide surfaces,” Surf Sci Rep, vol. 71, no. 1, pp. 272–365, Mar. 2016, https://doi.org/10.1016/j.surfrep.2016.02.001

J. G. Carriazo Baños, V. E. Noval Lara, and C. Ochoa Puentes, “Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea,” Revista Colombiana de Química, vol. 46, no. 1, p. 42, Jan. 2017, https://doi.org/10.15446/rev.colomb.quim.v46n1.62831

F. C. C. Moura et al., “Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites,” Chemosphere, vol. 60, no. 8, pp. 1118–1123, Aug. 2005, https://doi.org/10.1016/j.chemosphere.2004.12.076

J. Chun et al., “Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic,” Chemosphere, vol. 89, no. 10, pp. 1230–1237, Nov. 2012, https://doi.org/10.1016/j.chemosphere.2012.07.046

S. Yang et al., “Degradation of Methylene Blue by Heterogeneous Fenton Reaction Using Titanomagnetite at Neutral pH Values: Process and Affecting Factors,” Ind Eng Chem Res, vol. 48, no. 22, pp. 9915–9921, Nov. 2009, https://doi.org/10.1021/ie900666b

X. Huang, X. Hou, F. Song, J. Zhao, and L. Zhang, “Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals,” The Journal of Physical Chemistry C, vol. 121, no. 2, pp. 1113–1121, Jan. 2017, https://doi.org/10.1021/acs.jpcc.6b09281

P. J. Vikesland, A. M. Heathcock, R. L. Rebodos, and K. E. Makus, “Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride,” Environ Sci Technol, vol. 41, no. 15, pp. 5277–5283, Aug. 2007, https://doi.org/10.1021/es062082i

H. Liu, T. Chen, and R. L. Frost, “An overview of the role of goethite surfaces in the environment,” Chemosphere, vol. 103, pp. 1–11, May 2014, https://doi.org/10.1016/j.chemosphere.2013.11.065

J. J. Wu, M. Muruganandham, J. S. Yang, and S. S. Lin, “Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH,” Catal Commun, vol. 7, no. 11, pp. 901–906, Nov. 2006, https://doi.org/10.1016/j.catcom.2006.03.015

K. Lin, J. Ding, H. Wang, X. Huang, and J. Gan, “Goethite-mediated transformation of bisphenol A,” Chemosphere, vol. 89, no. 7, pp. 789–795, Oct. 2012, https://doi.org/10.1016/j.chemosphere.2012.04.053

T. R. Gordon and A. L. Marsh, “Temperature Dependence of the Oxidation of 2-Chlorophenol by Hydrogen Peroxide in the Presence of Goethite,” Catal Letters, vol. 132, no. 3–4, pp. 349–354, Aug. 2009, https://doi.org/10.1007/s10562-009-0125-6

C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A. N. Grace, and J. Madhavan, “Iron Oxide Nanomaterials for Water Purification,” in Nanoscale Materials in Water Purification, Elsevier, 2019, pp. 431–446. https://doi.org/10.1016/B978-0-12-813926-4.00022-7

X. Hou, X. Huang, Z. Ai, J. Zhao, and L. Zhang, “Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants,” J Hazard Mater, vol. 310, pp. 170–178, Jun. 2016, https://doi.org/10.1016/j.jhazmat.2016.01.020

X. Wang, J. Wang, Z. Cui, S. Wang, and M. Cao, “Facet effect of α-Fe 2 O 3 crystals on photocatalytic performance in the photo-Fenton reaction,” RSC Adv, vol. 4, no. 65, p. 34387, Jul. 2014, https://doi.org/10.1039/C4RA03866E

J. Y. T. Chan, S. Y. Ang, E. Y. Ye, M. Sullivan, J. Zhang, and M. Lin, “Heterogeneous photo-Fenton reaction on hematite (α-Fe 2 O 3 ){104}, {113} and {001} surface facets,” Physical Chemistry Chemical Physics, vol. 17, no. 38, pp. 25333–25341, Aug. 2015, https://doi.org/10.1039/C5CP03332B

Y. Ma, S. Meng, M. Qin, H. Liu, and Y. Wei, “New insight on kinetics of catalytic decomposition of hydrogen peroxide on ferrihydrite: Based on the preparation procedures of ferrihydrite,” Journal of Physics and Chemistry of Solids, vol. 73, no. 1, pp. 30–34, Jan. 2012, https://doi.org/10.1016/j.jpcs.2011.09.015

J. C. Barreiro, M. D. Capelato, L. Martin-Neto, and H. C. Bruun Hansen, “Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system,” Water Res, vol. 41, no. 1, pp. 55–62, Jan. 2007, https://doi.org/10.1016/j.watres.2006.09.016

R. Matta, K. Hanna, and S. Chiron, “Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals,” Science of The Total Environment, vol. 385, no. 1–3, pp. 242–251, Oct. 2007, https://doi.org/10.1016/j.scitotenv.2007.06.030

K. Hanna, T. Kone, and G. Medjahdi, “Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation,” Catal Commun, vol. 9, no. 5, pp. 955–959, Mar. 2008, https://doi.org/10.1016/j.catcom.2007.09.035

X. Xue, K. Hanna, M. Abdelmoula, and N. Deng, “Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations,” Appl Catal B, vol. 89, no. 3–4, pp. 432–440, Jul. 2009, https://doi.org/10.1016/j.apcatb.2008.12.024

H. Hassan and B. H. Hameed, “Decolorization of Acid Red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst,” in 2011 International Conference on Environment Science and Engineering, vol. 8, pp. 232–236, 2011, [Online]. Available: http://www.ipcbee.com/vol8/52-S20010.pdf

C. Ruales-Lonfat et al., “Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH,” Appl Catal B, vol. 166–167, pp. 497–508, May 2015, https://doi.org/10.1016/j.apcatb.2014.12.007

H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, and X. Wang, “A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system,” Ecotoxicol Environ Saf, vol. 200, p. 110744, Sep. 2020, https://doi.org/10.1016/j.ecoenv.2020.110744

X. Chen et al., “Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity,” Catal Sci Technol, vol. 6, no. 12, pp. 4184–4191, Jan. 2016, https://doi.org/10.1039/C6CY00080K

M. Minella et al., “Photo-Fenton oxidation of phenol with magnetite as iron source,” Appl Catal B, vol. 154–155, pp. 102–109, Jul. 2014, https://doi.org/10.1016/j.apcatb.2014.02.006

G. Zhang, Q. Wang, W. Zhang, T. Li, Y. Yuan, and P. Wang, “Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH),” Photochemical & Photobiological Sciences, vol. 15, no. 8, pp. 1046–1053, Jul. 2016, https://doi.org/10.1039/C6PP00051G

Y. Zhang et al., “Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight,” J Colloid Interface Sci, vol. 587, pp. 467–478, Apr. 2021, https://doi.org/10.1016/j.jcis.2020.12.008

X. Zhang et al., “Facile synthesis of mesoporous anatase/rutile/hematite triple heterojunctions for superior heterogeneous photo-Fenton catalysis,” Appl Catal B, vol. 263, p. 118335, Apr. 2020, https://doi.org/10.1016/j.apcatb.2019.118335

R. C. C. Costa, F. C. C. Moura, J. D. Ardisson, J. D. Fabris, and R. M. Lago, “Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides,” Appl Catal B, vol. 83, no. 1–2, pp. 131–139, Sep. 2008, https://doi.org/10.1016/j.apcatb.2008.01.039

R. C. C. Costa et al., “Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions,” J Hazard Mater, vol. 129, no. 1–3, pp. 171–178, Feb. 2006, https://doi.org/10.1016/j.jhazmat.2005.08.028

J. Xu et al., “Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium,” Chemical Engineering Journal, vol. 291, pp. 174–183, May 2016, https://doi.org/10.1016/j.cej.2016.01.059

I. R. Guimaraes, A. Giroto, L. C. A. Oliveira, M. C. Guerreiro, D. Q. Lima, and J. D. Fabris, “Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process,” Appl Catal B, vol. 91, no. 3–4, pp. 581–586, Sep. 2009, https://doi.org/10.1016/j.apcatb.2009.06.030

T. D. Nguyen, N. H. Phan, M. H. Do, and K. T. Ngo, “Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange,” J Hazard Mater, vol. 185, no. 2–3, pp. 653–661, Jan. 2011, https://doi.org/10.1016/j.jhazmat.2010.09.068

N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao, and J. C. Diniz da Costa, “The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe 3 O 4,” Chemical Communications, vol. 51, no. 45, pp. 9291–9293, Apr. 2015, https://doi.org/10.1039/C5CC02292D

Y. Liu, X. Zhang, J. Deng, and Y. Liu, “A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides,” Chemosphere, vol. 277, p. 130305, Aug. 2021, https://doi.org/10.1016/j.chemosphere.2021.130305

R. Zhu et al., “CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling,” Appl Catal B, vol. 270, p. 118891, Aug. 2020, https://doi.org/10.1016/j.apcatb.2020.118891

S. Bao et al., “Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation,” J Colloid Interface Sci, vol. 601, pp. 283–293, Nov. 2021, https://doi.org/10.1016/j.jcis.2021.05.137

T. Wang, C.-C. Yang, K. Qin, C.-W. Chen, and C.-D. Dong, “Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction,” J Hazard Mater, vol. 406, p. 124791, Mar. 2021, https://doi.org/10.1016/j.jhazmat.2020.124791

Y. Gao et al., “Fe 3 O 4 Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater,” ChemPhysChem, vol. 17, no. 13, pp. 1999–2007, Jul. 2016, https://doi.org/10.1002/cphc.201600117

A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, “Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies,” Mater Today Proc, vol. 22, part. 2, pp. 248–254, 2020, https://doi.org/10.1016/j.matpr.2019.08.095

H. Liu, M. Tong, K. Zhu, H. Liu, and R. Chen, “Preparation and photo-fenton degradation activity of α-Fe2O3 nanorings obtained by adding H2PO4−, SO42−, and citric acid,” Chemical Engineering Journal, vol. 382, p. 123010, Feb. 2020, https://doi.org/10.1016/j.cej.2019.123010

C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” J Clean Prod, vol. 180, pp. 550–559, Apr. 2018, https://doi.org/10.1016/j.jclepro.2018.01.127

J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification,” Chemosphere, vol. 276, p. 130177, Aug. 2021, https://doi.org/10.1016/j.chemosphere.2021.130177

M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, and M. Panjan, “Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties,” J Alloys Compd, vol. 792, pp. 599–609, Jul. 2019, https://doi.org/10.1016/j.jallcom.2019.03.414

L. Qiao and M. T. Swihart, “Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms,” Adv Colloid Interface Sci, vol. 244, pp. 199–266, Jun. 2017, https://doi.org/10.1016/j.cis.2016.01.005

J. W. Geus and A. J. van Dillen, “Preparation of Supported Catalysts by Deposition-Precipitation,” in Handbook of Heterogeneous Catalysis, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. https://doi.org/10.1002/9783527610044.hetcat0021

L. C. Paredes-Quevedo, C. González-Caicedo, J. A. Torres-Luna, and J. G. Carriazo, “Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay,” Water Air Soil Pollut, vol. 232, no. 1, p. 4, Jan. 2021, https://doi.org/10.1007/s11270-020-04968-2

S. Benkhaya, S. M’ rabet, and A. el Harfi, “A review on classifications, recent synthesis and applications of textile dyes,” Inorg Chem Commun, vol. 115, p. 107891, May 2020, https://doi.org/10.1016/j.inoche.2020.107891

M. Sahoo, “Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives,” Res J Chem Environ, vol. 15, no. 2, pp. 96–112, Jun. 2011, [Online]. Available: https://www.researchgate.net/publication/279585793_Degradation_and_mineralization_of_organic_contaminants_by_Fenton_and_photo-Fenton_processes_Review_of_mechanisms_and_effects_of_organic_and_inorganic_additives

A. Mohamed et al., “Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV,” Environ Sci Eur, vol. 32, no. 1, p. 160, Dec. 2020, https://doi.org/10.1186/s12302-020-00436-0

X. Tian et al., “Catalytic Degradation of Phenol and p-Nitrophenol Using Fe3O4/MWCNT Nanocomposites as Heterogeneous Fenton-Like Catalyst,” Water Air Soil Pollut, vol. 228, no. 8, p. 297, Jul. 2017, https://doi.org/10.1007/s11270-017-3485-3

J. Zhang, X. Zhang, and Y. Wang, “Degradation of phenol by a heterogeneous photo-Fenton process using Fe/Cu/Al catalysts,” RSC Adv, vol. 6, no. 16, pp. 13168–13176, Jan. 2016, https://doi.org/10.1039/C5RA20897A

J. Carriazo, E. Guélou, J. Barrault, J. M. Tatibouët, R. Molina, and S. Moreno, “Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe,” Water Res, vol. 39, no. 16, pp. 3891–3899, Oct. 2005, https://doi.org/10.1016/j.watres.2005.06.034

G. Cheng, J. Lin, J. Lu, X. Zhao, Z. Cai, and J. Fu, “Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet,” Biomed Res Int, vol. 2015, pp. 1–8, Aug. 2015, https://doi.org/10.1155/2015/205903

L. Yu, X. Yang, Y. Ye, and D. Wang, “Efficient removal of atrazine in water with a Fe 3 O 4 /MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst,” RSC Adv, vol. 5, no. 57, pp. 46059–46066, May. 2015, https://doi.org/10.1039/C5RA04249F

M. Munoz, F. J. Mora, Z. M. de Pedro, S. Alvarez-Torrellas, J. A. Casas, and J. J. Rodriguez, “Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst,” J Hazard Mater, vol. 331, pp. 45–54, Jun. 2017, https://doi.org/10.1016/j.jhazmat.2017.02.017

N. Jaafarzadeh, B. Kakavandi, A. Takdastan, R. R. Kalantary, M. Azizi, and S. Jorfi, “Powder activated carbon/Fe 3 O 4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: degradation mechanism and kinetic,” RSC Adv, vol. 5, no. 103, pp. 84718–84728, Sep. 2015, https://doi.org/10.1039/C5RA17953J

Y. Wang, J. Liu, D. Kang, C. Wu, and Y. Wu, “Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review,” Rev Environ Sci Biotechnol, vol. 16, no. 4, pp. 717–735, Dec. 2017, https://doi.org/10.1007/s11157-017-9446-x

J. Tang and J. Wang, “Fe 3 O 4 -MWCNT Magnetic Nanocomposites as Efficient Fenton-Like Catalysts for Degradation of Sulfamethazine in Aqueous Solution,” ChemistrySelect, vol. 2, no. 33, pp. 10727–10735, Nov. 2017, https://doi.org/10.1002/slct.201702249

S.-P. Sun, X. Zeng, and A. T. Lemley, “Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH,” J Mol Catal A Chem, vol. 371, pp. 94–103, May 2013, https://doi.org/10.1016/j.molcata.2013.01.027

Cómo citar
[1]
V. Garzón-Cucaita y J. G. Carriazo, «Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes», TecnoL., vol. 25, n.º 55, p. e2393, nov. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-11-22
Sección
Artículos de revisión

Métricas